switch-examples/audio/playtone/source/main.c

170 lines
5.1 KiB
C

#include <string.h>
#include <stdio.h>
#include <math.h>
#include <switch.h>
#define SAMPLERATE 48000
#define SAMPLESPERBUF (SAMPLERATE / 10)
void fill_audio_buffer(void* audio_buffer, size_t offset, size_t size, int frequency) {
u32* dest = (u32*) audio_buffer;
for (int i = 0; i < size; i++) {
// This is a simple sine wave, with a frequency of `frequency` Hz, and an amplitude 30% of maximum.
s16 sample = 0.3 * 0x7FFF * sin(frequency * (2 * M_PI) * (offset + i) / SAMPLERATE);
// Stereo samples are interleaved: left and right channels.
dest[i] = (sample << 16) | (sample & 0xffff);
}
}
int main(int argc, char **argv)
{
Result rc = 0;
AudioOutBuffer source_buffer;
AudioOutBuffer released_buffer;
int notefreq[] = {
220,
440, 880, 1760, 3520, 7040,
14080,
7040, 3520, 1760, 880, 440
};
u32 raw_data[SAMPLESPERBUF * 2];
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[4]);
gfxInitDefault();
// Initialize console. Using NULL as the second argument tells the console library to use the internal console structure as current one.
consoleInit(NULL);
// Initialize the default audio output device
rc = audoutInitialize();
printf("audoutInitialize() returned 0x%x\n", rc);
if (R_SUCCEEDED(rc))
{
printf("Sample rate: 0x%x\n", audoutGetSampleRate());
printf("Channel count: 0x%x\n", audoutGetChannelCount());
printf("PCM format: 0x%x\n", audoutGetPcmFormat());
printf("Device state: 0x%x\n", audoutGetDeviceState());
// Start audio playback.
rc = audoutStartAudioOut();
printf("audoutStartAudioOut() returned 0x%x\n", rc);
}
bool play_tone = false;
printf("Press A, B, Y, X, Left, Up, Right, Down, L, R, ZL or ZR to play a different tone.\n");
while (appletMainLoop())
{
//Scan all the inputs. This should be done once for each frame
hidScanInput();
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_PLUS) break; // break in order to return to hbmenu
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_A)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[0]);
play_tone = true;
}
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_B)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[1]);
play_tone = true;
}
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_Y)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[2]);
play_tone = true;
}
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_X)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[3]);
play_tone = true;
}
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_DLEFT)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[4]);
play_tone = true;
}
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_DUP)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[5]);
play_tone = true;
}
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_DRIGHT)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[6]);
play_tone = true;
}
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_DDOWN)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[7]);
play_tone = true;
}
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_L)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[8]);
play_tone = true;
}
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_R)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[9]);
play_tone = true;
}
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_ZL)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[10]);
play_tone = true;
}
if (hidKeysDown(CONTROLLER_P1_AUTO) & KEY_ZR)
{
fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[11]);
play_tone = true;
}
if (play_tone)
{
// Prepare the audio data source buffer.
source_buffer.next = 0;
source_buffer.buffer = raw_data;
source_buffer.buffer_size = sizeof(raw_data);
source_buffer.data_size = SAMPLESPERBUF * 2;
source_buffer.data_offset = 0;
// Play this buffer once.
audoutPlayBuffer(&source_buffer, &released_buffer);
play_tone = false;
}
gfxFlushBuffers();
gfxSwapBuffers();
gfxWaitForVsync();
}
// Stop audio playback.
rc = audoutStopAudioOut();
printf("audoutStopAudioOut() returned 0x%x\n", rc);
// Terminate the default audio output device.
audoutExit();
gfxExit();
return 0;
}