switch-examples/graphics/deko3d/deko_examples/source/Example06_Multisampling.cpp

415 lines
15 KiB
C++

/*
** deko3d Example 06: Simple Multisampling
** This example shows how to use a multisampled render target, which is then resolved into the final framebuffer.
** New concepts in this example:
** - Creating multisampled render targets
** - Rendering to non-swapchain render targets
** - Configuring multisample state
** - Performing a resolve step
** - Discarding color/depth buffers that are not used for presentation
*/
// Sample Framework headers
#include "SampleFramework/CApplication.h"
#include "SampleFramework/CMemPool.h"
#include "SampleFramework/CShader.h"
#include "SampleFramework/CCmdMemRing.h"
// C++ standard library headers
#include <array>
#include <optional>
// GLM headers
#define GLM_FORCE_DEFAULT_ALIGNED_GENTYPES // Enforces GLSL std140/std430 alignment rules for glm types
#define GLM_FORCE_INTRINSICS // Enables usage of SIMD CPU instructions (requiring the above as well)
#include <glm/vec3.hpp>
#include <glm/vec4.hpp>
#include <glm/mat4x4.hpp>
#include <glm/gtc/matrix_transform.hpp>
namespace
{
struct Vertex
{
float position[3];
float color[3];
};
constexpr std::array VertexAttribState =
{
DkVtxAttribState{ 0, 0, offsetof(Vertex, position), DkVtxAttribSize_3x32, DkVtxAttribType_Float, 0 },
DkVtxAttribState{ 0, 0, offsetof(Vertex, color), DkVtxAttribSize_3x32, DkVtxAttribType_Float, 0 },
};
constexpr std::array VertexBufferState =
{
DkVtxBufferState{ sizeof(Vertex), 0 },
};
constexpr std::array CubeVertexData =
{
// +X face
Vertex{ { +1.0f, +1.0f, +1.0f }, { 1.0f, 0.0f, 0.0f } },
Vertex{ { +1.0f, -1.0f, +1.0f }, { 0.0f, 1.0f, 0.0f } },
Vertex{ { +1.0f, -1.0f, -1.0f }, { 0.0f, 0.0f, 1.0f } },
Vertex{ { +1.0f, +1.0f, -1.0f }, { 1.0f, 1.0f, 0.0f } },
// -X face
Vertex{ { -1.0f, +1.0f, -1.0f }, { 1.0f, 0.0f, 0.0f } },
Vertex{ { -1.0f, -1.0f, -1.0f }, { 0.0f, 1.0f, 0.0f } },
Vertex{ { -1.0f, -1.0f, +1.0f }, { 0.0f, 0.0f, 1.0f } },
Vertex{ { -1.0f, +1.0f, +1.0f }, { 1.0f, 1.0f, 0.0f } },
// +Y face
Vertex{ { -1.0f, +1.0f, -1.0f }, { 1.0f, 0.0f, 0.0f } },
Vertex{ { -1.0f, +1.0f, +1.0f }, { 0.0f, 1.0f, 0.0f } },
Vertex{ { +1.0f, +1.0f, +1.0f }, { 0.0f, 0.0f, 1.0f } },
Vertex{ { +1.0f, +1.0f, -1.0f }, { 1.0f, 1.0f, 0.0f } },
// -Y face
Vertex{ { -1.0f, -1.0f, +1.0f }, { 1.0f, 0.0f, 0.0f } },
Vertex{ { -1.0f, -1.0f, -1.0f }, { 0.0f, 1.0f, 0.0f } },
Vertex{ { +1.0f, -1.0f, -1.0f }, { 0.0f, 0.0f, 1.0f } },
Vertex{ { +1.0f, -1.0f, +1.0f }, { 1.0f, 1.0f, 0.0f } },
// +Z face
Vertex{ { -1.0f, +1.0f, +1.0f }, { 1.0f, 0.0f, 0.0f } },
Vertex{ { -1.0f, -1.0f, +1.0f }, { 0.0f, 1.0f, 0.0f } },
Vertex{ { +1.0f, -1.0f, +1.0f }, { 0.0f, 0.0f, 1.0f } },
Vertex{ { +1.0f, +1.0f, +1.0f }, { 1.0f, 1.0f, 0.0f } },
// -Z face
Vertex{ { +1.0f, +1.0f, -1.0f }, { 1.0f, 0.0f, 0.0f } },
Vertex{ { +1.0f, -1.0f, -1.0f }, { 0.0f, 1.0f, 0.0f } },
Vertex{ { -1.0f, -1.0f, -1.0f }, { 0.0f, 0.0f, 1.0f } },
Vertex{ { -1.0f, +1.0f, -1.0f }, { 1.0f, 1.0f, 0.0f } },
};
struct Transformation
{
glm::mat4 mdlvMtx;
glm::mat4 projMtx;
};
inline float fractf(float x)
{
return x - floorf(x);
}
}
class CExample06 final : public CApplication
{
static constexpr unsigned NumFramebuffers = 2;
static constexpr unsigned StaticCmdSize = 0x10000;
static constexpr unsigned DynamicCmdSize = 0x10000;
static constexpr DkMsMode MultisampleMode = DkMsMode_4x;
PadState pad;
dk::UniqueDevice device;
dk::UniqueQueue queue;
std::optional<CMemPool> pool_images;
std::optional<CMemPool> pool_code;
std::optional<CMemPool> pool_data;
dk::UniqueCmdBuf cmdbuf;
dk::UniqueCmdBuf dyncmd;
CCmdMemRing<NumFramebuffers> dynmem;
CShader vertexShader;
CShader fragmentShader;
Transformation transformState;
CMemPool::Handle transformUniformBuffer;
CMemPool::Handle vertexBuffer;
uint32_t framebufferWidth;
uint32_t framebufferHeight;
CMemPool::Handle colorBuffer_mem;
CMemPool::Handle depthBuffer_mem;
CMemPool::Handle framebuffers_mem[NumFramebuffers];
dk::Image colorBuffer;
dk::Image depthBuffer;
dk::Image framebuffers[NumFramebuffers];
DkCmdList framebuffer_cmdlists[NumFramebuffers];
dk::UniqueSwapchain swapchain;
DkCmdList render_cmdlist, discard_cmdlist;
public:
CExample06()
{
// Create the deko3d device
device = dk::DeviceMaker{}.create();
// Create the main queue
queue = dk::QueueMaker{device}.setFlags(DkQueueFlags_Graphics).create();
// Create the memory pools
pool_images.emplace(device, DkMemBlockFlags_GpuCached | DkMemBlockFlags_Image, 64*1024*1024);
pool_code.emplace(device, DkMemBlockFlags_CpuUncached | DkMemBlockFlags_GpuCached | DkMemBlockFlags_Code, 128*1024);
pool_data.emplace(device, DkMemBlockFlags_CpuUncached | DkMemBlockFlags_GpuCached, 1*1024*1024);
// Create the static command buffer and feed it freshly allocated memory
cmdbuf = dk::CmdBufMaker{device}.create();
CMemPool::Handle cmdmem = pool_data->allocate(StaticCmdSize);
cmdbuf.addMemory(cmdmem.getMemBlock(), cmdmem.getOffset(), cmdmem.getSize());
// Create the dynamic command buffer and allocate memory for it
dyncmd = dk::CmdBufMaker{device}.create();
dynmem.allocate(*pool_data, DynamicCmdSize);
// Load the shaders
vertexShader.load(*pool_code, "romfs:/shaders/transform_vsh.dksh");
fragmentShader.load(*pool_code, "romfs:/shaders/color_fsh.dksh");
// Create the transformation uniform buffer
transformUniformBuffer = pool_data->allocate(sizeof(transformState), DK_UNIFORM_BUF_ALIGNMENT);
// Load the vertex buffer
vertexBuffer = pool_data->allocate(sizeof(CubeVertexData), alignof(Vertex));
memcpy(vertexBuffer.getCpuAddr(), CubeVertexData.data(), vertexBuffer.getSize());
// Initialize gamepad
padConfigureInput(1, HidNpadStyleSet_NpadStandard);
padInitializeDefault(&pad);
}
~CExample06()
{
// Destroy the framebuffer resources
destroyFramebufferResources();
// Destroy the vertex buffer (not strictly needed in this case)
vertexBuffer.destroy();
// Destroy the uniform buffer (not strictly needed in this case)
transformUniformBuffer.destroy();
}
void createFramebufferResources()
{
// Create layout for the (multisampled) color buffer
dk::ImageLayout layout_colorbuffer;
dk::ImageLayoutMaker{device}
.setType(DkImageType_2DMS)
.setFlags(DkImageFlags_UsageRender | DkImageFlags_Usage2DEngine | DkImageFlags_HwCompression)
.setFormat(DkImageFormat_RGBA8_Unorm)
.setMsMode(MultisampleMode)
.setDimensions(framebufferWidth, framebufferHeight)
.initialize(layout_colorbuffer);
// Create layout for the (also multisampled) depth buffer
dk::ImageLayout layout_depthbuffer;
dk::ImageLayoutMaker{device}
.setType(DkImageType_2DMS)
.setFlags(DkImageFlags_UsageRender | DkImageFlags_HwCompression)
.setFormat(DkImageFormat_Z24S8)
.setMsMode(MultisampleMode)
.setDimensions(framebufferWidth, framebufferHeight)
.initialize(layout_depthbuffer);
// Create the color buffer
colorBuffer_mem = pool_images->allocate(layout_colorbuffer.getSize(), layout_colorbuffer.getAlignment());
colorBuffer.initialize(layout_colorbuffer, colorBuffer_mem.getMemBlock(), colorBuffer_mem.getOffset());
// Create the depth buffer
depthBuffer_mem = pool_images->allocate(layout_depthbuffer.getSize(), layout_depthbuffer.getAlignment());
depthBuffer.initialize(layout_depthbuffer, depthBuffer_mem.getMemBlock(), depthBuffer_mem.getOffset());
// Create layout for the framebuffers
dk::ImageLayout layout_framebuffer;
dk::ImageLayoutMaker{device}
.setFlags(DkImageFlags_Usage2DEngine | DkImageFlags_UsagePresent)
.setFormat(DkImageFormat_RGBA8_Unorm)
.setDimensions(framebufferWidth, framebufferHeight)
.initialize(layout_framebuffer);
// Create the framebuffers
std::array<DkImage const*, NumFramebuffers> fb_array;
uint64_t fb_size = layout_framebuffer.getSize();
uint32_t fb_align = layout_framebuffer.getAlignment();
for (unsigned i = 0; i < NumFramebuffers; i ++)
{
// Allocate a framebuffer
framebuffers_mem[i] = pool_images->allocate(fb_size, fb_align);
framebuffers[i].initialize(layout_framebuffer, framebuffers_mem[i].getMemBlock(), framebuffers_mem[i].getOffset());
// Generate a command list that resolves the color buffer into the framebuffer
dk::ImageView colorView { colorBuffer }, framebufferView { framebuffers[i] };
cmdbuf.resolveImage(colorView, framebufferView);
framebuffer_cmdlists[i] = cmdbuf.finishList();
// Fill in the array for use later by the swapchain creation code
fb_array[i] = &framebuffers[i];
}
// Create the swapchain using the framebuffers
swapchain = dk::SwapchainMaker{device, nwindowGetDefault(), fb_array}.create();
// Generate the main command lists
recordStaticCommands();
// Initialize the projection matrix
transformState.projMtx = glm::perspectiveRH_ZO(
glm::radians(40.0f),
float(framebufferWidth)/float(framebufferHeight),
0.01f, 1000.0f);
}
void destroyFramebufferResources()
{
// Return early if we have nothing to destroy
if (!swapchain) return;
// Make sure the queue is idle before destroying anything
queue.waitIdle();
// Clear the static cmdbuf, destroying the static cmdlists in the process
cmdbuf.clear();
// Destroy the swapchain
swapchain.destroy();
// Destroy the framebuffers
for (unsigned i = 0; i < NumFramebuffers; i ++)
framebuffers_mem[i].destroy();
// Destroy the depth buffer
depthBuffer_mem.destroy();
// Destroy the color buffer
colorBuffer_mem.destroy();
}
void recordStaticCommands()
{
// Initialize state structs with deko3d defaults
dk::RasterizerState rasterizerState;
dk::MultisampleState multisampleState;
dk::ColorState colorState;
dk::ColorWriteState colorWriteState;
dk::DepthStencilState depthStencilState;
// Configure multisample state
multisampleState.setMode(MultisampleMode);
multisampleState.setLocations();
// Bind color buffer and depth buffer
dk::ImageView colorTarget { colorBuffer }, depthTarget { depthBuffer };
cmdbuf.bindRenderTargets(&colorTarget, &depthTarget);
// Configure viewport and scissor
cmdbuf.setViewports(0, { { 0.0f, 0.0f, (float)framebufferWidth, (float)framebufferHeight, 0.0f, 1.0f } });
cmdbuf.setScissors(0, { { 0, 0, framebufferWidth, framebufferHeight } });
// Clear the color and depth buffers
cmdbuf.clearColor(0, DkColorMask_RGBA, 0.0f, 0.0f, 0.0f, 0.0f);
cmdbuf.clearDepthStencil(true, 1.0f, 0xFF, 0);
// Bind state required for drawing the cube
cmdbuf.bindShaders(DkStageFlag_GraphicsMask, { vertexShader, fragmentShader });
cmdbuf.bindUniformBuffer(DkStage_Vertex, 0, transformUniformBuffer.getGpuAddr(), transformUniformBuffer.getSize());
cmdbuf.bindRasterizerState(rasterizerState);
cmdbuf.bindMultisampleState(multisampleState);
cmdbuf.bindColorState(colorState);
cmdbuf.bindColorWriteState(colorWriteState);
cmdbuf.bindDepthStencilState(depthStencilState);
cmdbuf.bindVtxBuffer(0, vertexBuffer.getGpuAddr(), vertexBuffer.getSize());
cmdbuf.bindVtxAttribState(VertexAttribState);
cmdbuf.bindVtxBufferState(VertexBufferState);
// Draw the cube
cmdbuf.draw(DkPrimitive_Quads, CubeVertexData.size(), 1, 0, 0);
// Finish off this command list
render_cmdlist = cmdbuf.finishList();
// Discard the color and depth buffers since we don't need them anymore
cmdbuf.bindRenderTargets(&colorTarget, &depthTarget);
cmdbuf.discardColor(0);
cmdbuf.discardDepthStencil();
// Finish off this command list
discard_cmdlist = cmdbuf.finishList();
}
void render()
{
// Begin generating the dynamic command list, for commands that need to be sent only this frame specifically
dynmem.begin(dyncmd);
// Update the uniform buffer with the new transformation state (this data gets inlined in the command list)
dyncmd.pushConstants(
transformUniformBuffer.getGpuAddr(), transformUniformBuffer.getSize(),
0, sizeof(transformState), &transformState);
// Finish off the dynamic command list (which also submits it to the queue)
queue.submitCommands(dynmem.end(dyncmd));
// Run the main rendering command list
queue.submitCommands(render_cmdlist);
// Acquire a framebuffer from the swapchain
int slot = queue.acquireImage(swapchain);
// Submit the command list that resolves the color buffer to the framebuffer
queue.submitCommands(framebuffer_cmdlists[slot]);
// Submit the command list used for discarding the color and depth buffers
queue.submitCommands(discard_cmdlist);
// Now that we are done rendering, present it to the screen (this also flushes the queue)
queue.presentImage(swapchain, slot);
}
void onOperationMode(AppletOperationMode mode) override
{
// Destroy the framebuffer resources
destroyFramebufferResources();
// Choose framebuffer size
chooseFramebufferSize(framebufferWidth, framebufferHeight, mode);
// Recreate the framebuffers and its associated resources
createFramebufferResources();
}
bool onFrame(u64 ns) override
{
padUpdate(&pad);
u64 kDown = padGetButtonsDown(&pad);
if (kDown & HidNpadButton_Plus)
return false;
float time = ns / 1000000000.0; // double precision division; followed by implicit cast to single precision
float tau = glm::two_pi<float>();
float period1 = fractf(time/8.0f);
float period2 = fractf(time/4.0f);
// Generate the model-view matrix for this frame
// Keep in mind that GLM transformation functions multiply to the right, so essentially we have:
// mdlvMtx = Translate * RotateX * RotateY * Scale
// This means that the Scale operation is applied first, then RotateY, and so on.
transformState.mdlvMtx = glm::mat4{1.0f};
transformState.mdlvMtx = glm::translate(transformState.mdlvMtx, glm::vec3{0.0f, 0.0f, -3.0f});
transformState.mdlvMtx = glm::rotate(transformState.mdlvMtx, sinf(period2 * tau) * tau / 8.0f, glm::vec3{1.0f, 0.0f, 0.0f});
transformState.mdlvMtx = glm::rotate(transformState.mdlvMtx, -period1 * tau, glm::vec3{0.0f, 1.0f, 0.0f});
transformState.mdlvMtx = glm::scale(transformState.mdlvMtx, glm::vec3{0.5f});
render();
return true;
}
};
void Example06(void)
{
CExample06 app;
app.run();
}