#include #include #include #include #define SAMPLERATE 48000 #define SAMPLESPERBUF (SAMPLERATE / 10) void fill_audio_buffer(void* audio_buffer, size_t offset, size_t size, int frequency) { u32* dest = (u32*) audio_buffer; for (int i = 0; i < size; i++) { // This is a simple sine wave, with a frequency of `frequency` Hz, and an amplitude 30% of maximum. s16 sample = 0.3 * 0x7FFF * sin(frequency * (2 * M_PI) * (offset + i) / SAMPLERATE); // Stereo samples are interleaved: left and right channels. dest[i] = (sample << 16) | (sample & 0xffff); } } int main(int argc, char **argv) { Result rc = 0; AudioOutBuffer source_buffer; AudioOutBuffer released_buffer; int notefreq[] = { 220, 440, 880, 1760, 3520, 7040, 14080, 7040, 3520, 1760, 880, 440 }; u32 raw_data[SAMPLESPERBUF * 2]; fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[4]); gfxInitDefault(); // Initialize console. Using NULL as the second argument tells the console library to use the internal console structure as current one. consoleInit(NULL); // Initialize the default audio output device rc = audoutInitialize(); printf("audoutInitialize() returned 0x%x\n", rc); if (R_SUCCEEDED(rc)) { printf("Sample rate: 0x%x\n", audoutGetSampleRate()); printf("Channel count: 0x%x\n", audoutGetChannelCount()); printf("PCM format: 0x%x\n", audoutGetPcmFormat()); printf("Device state: 0x%x\n", audoutGetDeviceState()); // Start audio playback. rc = audoutStartAudioOut(); printf("audoutStartAudioOut() returned 0x%x\n", rc); } bool play_tone = false; printf("Press A, B, Y, X, Left, Up, Right, Down, L, R, ZL or ZR to play a different tone.\n"); while (appletMainLoop()) { //Scan all the inputs. This should be done once for each frame hidScanInput(); //hidKeysDown returns information about which buttons have been just pressed (and they weren't in the previous frame) u32 kDown = hidKeysDown(CONTROLLER_P1_AUTO); if (kDown & KEY_PLUS) break; // break in order to return to hbmenu if (kDown & KEY_A) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[0]); play_tone = true; } if (kDown & KEY_B) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[1]); play_tone = true; } if (kDown & KEY_Y) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[2]); play_tone = true; } if (kDown & KEY_X) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[3]); play_tone = true; } if (kDown & KEY_DLEFT) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[4]); play_tone = true; } if (kDown & KEY_DUP) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[5]); play_tone = true; } if (kDown & KEY_DRIGHT) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[6]); play_tone = true; } if (kDown & KEY_DDOWN) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[7]); play_tone = true; } if (kDown & KEY_L) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[8]); play_tone = true; } if (kDown & KEY_R) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[9]); play_tone = true; } if (kDown & KEY_ZL) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[10]); play_tone = true; } if (kDown & KEY_ZR) { fill_audio_buffer(raw_data, 0, SAMPLESPERBUF * 2, notefreq[11]); play_tone = true; } if (play_tone) { // Prepare the audio data source buffer. source_buffer.next = 0; source_buffer.buffer = raw_data; source_buffer.buffer_size = sizeof(raw_data); source_buffer.data_size = SAMPLESPERBUF * 2; source_buffer.data_offset = 0; // Play this buffer once. audoutPlayBuffer(&source_buffer, &released_buffer); play_tone = false; } gfxFlushBuffers(); gfxSwapBuffers(); gfxWaitForVsync(); } // Stop audio playback. rc = audoutStopAudioOut(); printf("audoutStopAudioOut() returned 0x%x\n", rc); // Terminate the default audio output device. audoutExit(); gfxExit(); return 0; }