/* ** deko3d Example 05: Simple Tessellation ** This example shows how to use tessellation. ** New concepts in this example: ** - Using tessellation control and evaluation shaders ** - Controlling tessellation parameters ** - Configuring and using line polygon mode ** - Configuring and using built-in edge smoothing ** - Configuring and using blending (needed for obeying alpha generated by edge smoothing) */ // Sample Framework headers #include "SampleFramework/CApplication.h" #include "SampleFramework/CMemPool.h" #include "SampleFramework/CShader.h" // C++ standard library headers #include #include namespace { struct Vertex { float position[3]; float color[3]; }; constexpr std::array VertexAttribState = { DkVtxAttribState{ 0, 0, offsetof(Vertex, position), DkVtxAttribSize_3x32, DkVtxAttribType_Float, 0 }, DkVtxAttribState{ 0, 0, offsetof(Vertex, color), DkVtxAttribSize_3x32, DkVtxAttribType_Float, 0 }, }; constexpr std::array VertexBufferState = { DkVtxBufferState{ sizeof(Vertex), 0 }, }; constexpr std::array TriangleVertexData = { Vertex{ { 0.0f, +1.0f, 0.0f }, { 1.0f, 0.0f, 0.0f } }, Vertex{ { -1.0f, -1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f } }, Vertex{ { +1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } }, }; } class CExample05 final : public CApplication { static constexpr unsigned NumFramebuffers = 2; static constexpr uint32_t FramebufferWidth = 1280; static constexpr uint32_t FramebufferHeight = 720; static constexpr unsigned StaticCmdSize = 0x10000; dk::UniqueDevice device; dk::UniqueQueue queue; std::optional pool_images; std::optional pool_code; std::optional pool_data; dk::UniqueCmdBuf cmdbuf; CShader vertexShader; CShader tessCtrlShader; CShader tessEvalShader; CShader fragmentShader; CMemPool::Handle vertexBuffer; CMemPool::Handle framebuffers_mem[NumFramebuffers]; dk::Image framebuffers[NumFramebuffers]; DkCmdList framebuffer_cmdlists[NumFramebuffers]; dk::UniqueSwapchain swapchain; DkCmdList render_cmdlist; public: CExample05() { // Create the deko3d device device = dk::DeviceMaker{}.create(); // Create the main queue queue = dk::QueueMaker{device}.setFlags(DkQueueFlags_Graphics).create(); // Create the memory pools pool_images.emplace(device, DkMemBlockFlags_GpuCached | DkMemBlockFlags_Image, 16*1024*1024); pool_code.emplace(device, DkMemBlockFlags_CpuUncached | DkMemBlockFlags_GpuCached | DkMemBlockFlags_Code, 128*1024); pool_data.emplace(device, DkMemBlockFlags_CpuUncached | DkMemBlockFlags_GpuCached, 1*1024*1024); // Create the static command buffer and feed it freshly allocated memory cmdbuf = dk::CmdBufMaker{device}.create(); CMemPool::Handle cmdmem = pool_data->allocate(StaticCmdSize); cmdbuf.addMemory(cmdmem.getMemBlock(), cmdmem.getOffset(), cmdmem.getSize()); // Load the shaders vertexShader.load(*pool_code, "romfs:/shaders/basic_vsh.dksh"); tessCtrlShader.load(*pool_code, "romfs:/shaders/tess_simple_tcsh.dksh"); tessEvalShader.load(*pool_code, "romfs:/shaders/tess_simple_tesh.dksh"); fragmentShader.load(*pool_code, "romfs:/shaders/color_fsh.dksh"); // Load the vertex buffer vertexBuffer = pool_data->allocate(sizeof(TriangleVertexData), alignof(Vertex)); memcpy(vertexBuffer.getCpuAddr(), TriangleVertexData.data(), vertexBuffer.getSize()); // Create the framebuffer resources createFramebufferResources(); } ~CExample05() { // Destroy the framebuffer resources destroyFramebufferResources(); // Destroy the vertex buffer (not strictly needed in this case) vertexBuffer.destroy(); } void createFramebufferResources() { // Create layout for the framebuffers dk::ImageLayout layout_framebuffer; dk::ImageLayoutMaker{device} .setFlags(DkImageFlags_UsageRender | DkImageFlags_UsagePresent | DkImageFlags_HwCompression) .setFormat(DkImageFormat_RGBA8_Unorm) .setDimensions(FramebufferWidth, FramebufferHeight) .initialize(layout_framebuffer); // Create the framebuffers std::array fb_array; uint64_t fb_size = layout_framebuffer.getSize(); uint32_t fb_align = layout_framebuffer.getAlignment(); for (unsigned i = 0; i < NumFramebuffers; i ++) { // Allocate a framebuffer framebuffers_mem[i] = pool_images->allocate(fb_size, fb_align); framebuffers[i].initialize(layout_framebuffer, framebuffers_mem[i].getMemBlock(), framebuffers_mem[i].getOffset()); // Generate a command list that binds it dk::ImageView colorTarget{ framebuffers[i] }; cmdbuf.bindRenderTargets(&colorTarget); framebuffer_cmdlists[i] = cmdbuf.finishList(); // Fill in the array for use later by the swapchain creation code fb_array[i] = &framebuffers[i]; } // Create the swapchain using the framebuffers swapchain = dk::SwapchainMaker{device, nwindowGetDefault(), fb_array}.create(); // Generate the main rendering cmdlist recordStaticCommands(); } void destroyFramebufferResources() { // Return early if we have nothing to destroy if (!swapchain) return; // Make sure the queue is idle before destroying anything queue.waitIdle(); // Clear the static cmdbuf, destroying the static cmdlists in the process cmdbuf.clear(); // Destroy the swapchain swapchain.destroy(); // Destroy the framebuffers for (unsigned i = 0; i < NumFramebuffers; i ++) framebuffers_mem[i].destroy(); } void recordStaticCommands() { // Initialize state structs with deko3d defaults dk::RasterizerState rasterizerState; dk::ColorState colorState; dk::ColorWriteState colorWriteState; dk::BlendState blendState; // Configure rasterizer state: draw polygons as lines, and enable polygon smoothing rasterizerState.setPolygonMode(DkPolygonMode_Line); rasterizerState.setPolygonSmoothEnable(true); // Configure color state: enable blending (needed for polygon smoothing since it generates alpha values) colorState.setBlendEnable(0, true); // Configure viewport and scissor cmdbuf.setViewports(0, { { 0.0f, 0.0f, FramebufferWidth, FramebufferHeight, 0.0f, 1.0f } }); cmdbuf.setScissors(0, { { 0, 0, FramebufferWidth, FramebufferHeight } }); // Clear the color buffer cmdbuf.clearColor(0, DkColorMask_RGBA, 0.0f, 0.0f, 0.0f, 0.0f); // Bind state required for drawing the triangle cmdbuf.bindShaders(DkStageFlag_GraphicsMask, { vertexShader, tessCtrlShader, tessEvalShader, fragmentShader }); cmdbuf.bindRasterizerState(rasterizerState); cmdbuf.bindColorState(colorState); cmdbuf.bindColorWriteState(colorWriteState); cmdbuf.bindBlendStates(0, blendState); cmdbuf.bindVtxBuffer(0, vertexBuffer.getGpuAddr(), vertexBuffer.getSize()); cmdbuf.bindVtxAttribState(VertexAttribState); cmdbuf.bindVtxBufferState(VertexBufferState); cmdbuf.setLineWidth(4.0f); cmdbuf.setPatchSize(3); // Note that the tessellation control shader is optional. If no such shader is bound, // the following commands can be used to control tessellation: // (try it out! remove the "tessCtrlShader" from the bindShaders call and uncomment these) //cmdbuf.setTessInnerLevels(5.0f); //cmdbuf.setTessOuterLevels(7.0f, 3.0f, 5.0f); // Draw the triangle cmdbuf.draw(DkPrimitive_Patches, TriangleVertexData.size(), 1, 0, 0); // Finish off this command list render_cmdlist = cmdbuf.finishList(); } void render() { // Acquire a framebuffer from the swapchain (and wait for it to be available) int slot = queue.acquireImage(swapchain); // Run the command list that attaches said framebuffer to the queue queue.submitCommands(framebuffer_cmdlists[slot]); // Run the main rendering command list queue.submitCommands(render_cmdlist); // Now that we are done rendering, present it to the screen queue.presentImage(swapchain, slot); } bool onFrame(u64 ns) override { hidScanInput(); u64 kDown = hidKeysDown(CONTROLLER_P1_AUTO); if (kDown & KEY_PLUS) return false; render(); return true; } }; void Example05(void) { CExample05 app; app.run(); }