libnx/nx/source/crypto/aes_cbc.c
2023-10-21 21:20:57 +02:00

737 lines
26 KiB
C

#include <string.h>
#include <stdlib.h>
#include <arm_neon.h>
#include "result.h"
#include "crypto/aes_cbc.h"
/* Variable management macros. */
#define DECLARE_ROUND_KEY_VAR(n) \
const uint8x16_t round_key_##n = vld1q_u8(ctx->aes_ctx.round_keys[n])
#define AES_ENC_DEC_OUTPUT_THREE_BLOCKS() \
[tmp0]"+w"(tmp0), [tmp1]"+w"(tmp1), [tmp2]"+w"(tmp2)
#define AES_ENC_DEC_OUTPUT_ONE_BLOCK() \
[tmp0]"+w"(tmp0)
#define AES_ENC_DEC_INPUT_ROUND_KEY(n) \
[round_key_##n]"w"(round_key_##n)
/* AES Encryption macros. */
#define AES_ENC_ROUND(n, i) \
"aese %[tmp" #i "].16b, %[round_key_" #n "].16b\n" \
"aesmc %[tmp" #i "].16b, %[tmp" #i "].16b\n"
#define AES_ENC_SECOND_LAST_ROUND(n, i) \
"aese %[tmp" #i "].16b, %[round_key_" #n "].16b\n"
#define AES_ENC_LAST_ROUND(n, i) \
"eor %[tmp" #i "].16b, %[tmp" #i "].16b, %[round_key_" #n "].16b\n"
/* AES Decryption macros. */
#define AES_DEC_ROUND(n, i) \
"aesd %[tmp" #i "].16b, %[round_key_" #n "].16b\n" \
"aesimc %[tmp" #i "].16b, %[tmp" #i "].16b\n"
#define AES_DEC_SECOND_LAST_ROUND(n, i) \
"aesd %[tmp" #i "].16b, %[round_key_" #n "].16b\n"
#define AES_DEC_LAST_ROUND(n, i) \
"eor %[tmp" #i "].16b, %[tmp" #i "].16b, %[round_key_" #n "].16b\n"
/* Macro for main body of crypt wrapper. */
#define CRYPT_FUNC_BODY(block_handler) \
do { \
const u8 *cur_src = src; \
u8 *cur_dst = dst; \
\
/* Handle pre-buffered data. */ \
if (ctx->num_buffered > 0) { \
const size_t needed = AES_BLOCK_SIZE - ctx->num_buffered; \
const size_t copyable = (size > needed ? needed : size); \
memcpy(&ctx->buffer[ctx->num_buffered], cur_src, copyable); \
cur_src += copyable; \
ctx->num_buffered += copyable; \
size -= copyable; \
\
if (ctx->num_buffered == AES_BLOCK_SIZE) { \
block_handler(ctx, cur_dst, ctx->buffer, 1); \
cur_dst += AES_BLOCK_SIZE; \
ctx->num_buffered = 0; \
} \
} \
\
/* Handle complete blocks. */ \
if (size >= AES_BLOCK_SIZE) { \
const size_t num_blocks = size / AES_BLOCK_SIZE; \
block_handler(ctx, cur_dst, cur_src, num_blocks); \
size -= num_blocks * AES_BLOCK_SIZE; \
cur_src += num_blocks * AES_BLOCK_SIZE; \
cur_dst += num_blocks * AES_BLOCK_SIZE; \
} \
\
/* Buffer remaining data. */ \
if (size > 0) { \
memcpy(ctx->buffer, cur_src, size); \
ctx->num_buffered = size; \
} \
return (size_t)((uintptr_t)cur_dst - (uintptr_t)dst); \
} while (0)
void aes128CbcContextCreate(Aes128CbcContext *out, const void *key, const void *iv, bool is_encryptor) {
/* Initialize inner context. */
aes128ContextCreate(&out->aes_ctx, key, is_encryptor);
aes128CbcContextResetIv(out, iv);
}
void aes128CbcContextResetIv(Aes128CbcContext *ctx, const void *iv) {
/* Set IV, nothing is buffered. */
memcpy(ctx->iv, iv, sizeof(ctx->iv));
memset(ctx->buffer, 0, sizeof(ctx->buffer));
ctx->num_buffered = 0;
}
static inline void _aes128CbcEncryptBlocks(Aes128CbcContext *ctx, u8 *dst_u8, const u8 *src_u8, size_t num_blocks) {
/* Preload all round keys + iv into neon registers. */
DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2);
DECLARE_ROUND_KEY_VAR(3);
DECLARE_ROUND_KEY_VAR(4);
DECLARE_ROUND_KEY_VAR(5);
DECLARE_ROUND_KEY_VAR(6);
DECLARE_ROUND_KEY_VAR(7);
DECLARE_ROUND_KEY_VAR(8);
DECLARE_ROUND_KEY_VAR(9);
DECLARE_ROUND_KEY_VAR(10);
uint8x16_t cur_iv = vld1q_u8(ctx->iv);
/* Process last block or two individually. */
while (num_blocks >= 1) {
/* Read block in, xor with IV. */
uint8x16_t tmp0 = veorq_u8(cur_iv, vld1q_u8(src_u8));
src_u8 += AES_BLOCK_SIZE;
/* Actually do encryption, use optimized asm. */
__asm__ __volatile__ (
AES_ENC_ROUND(0, 0)
AES_ENC_ROUND(1, 0)
AES_ENC_ROUND(2, 0)
AES_ENC_ROUND(3, 0)
AES_ENC_ROUND(4, 0)
AES_ENC_ROUND(5, 0)
AES_ENC_ROUND(6, 0)
AES_ENC_ROUND(7, 0)
AES_ENC_ROUND(8, 0)
AES_ENC_SECOND_LAST_ROUND(9, 0)
AES_ENC_LAST_ROUND(10, 0)
: AES_ENC_DEC_OUTPUT_ONE_BLOCK()
: AES_ENC_DEC_INPUT_ROUND_KEY(0),
AES_ENC_DEC_INPUT_ROUND_KEY(1),
AES_ENC_DEC_INPUT_ROUND_KEY(2),
AES_ENC_DEC_INPUT_ROUND_KEY(3),
AES_ENC_DEC_INPUT_ROUND_KEY(4),
AES_ENC_DEC_INPUT_ROUND_KEY(5),
AES_ENC_DEC_INPUT_ROUND_KEY(6),
AES_ENC_DEC_INPUT_ROUND_KEY(7),
AES_ENC_DEC_INPUT_ROUND_KEY(8),
AES_ENC_DEC_INPUT_ROUND_KEY(9),
AES_ENC_DEC_INPUT_ROUND_KEY(10)
);
/* Update IV. */
cur_iv = tmp0;
/* Store to output. */
vst1q_u8(dst_u8, tmp0);
dst_u8 += AES_BLOCK_SIZE;
num_blocks--;
}
vst1q_u8(ctx->iv, cur_iv);
}
static inline void _aes128CbcDecryptBlocks(Aes128CbcContext *ctx, u8 *dst_u8, const u8 *src_u8, size_t num_blocks) {
/* Preload all round keys + iv into neon registers. */
DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2);
DECLARE_ROUND_KEY_VAR(3);
DECLARE_ROUND_KEY_VAR(4);
DECLARE_ROUND_KEY_VAR(5);
DECLARE_ROUND_KEY_VAR(6);
DECLARE_ROUND_KEY_VAR(7);
DECLARE_ROUND_KEY_VAR(8);
DECLARE_ROUND_KEY_VAR(9);
DECLARE_ROUND_KEY_VAR(10);
uint8x16_t cur_iv = vld1q_u8(ctx->iv);
/* Process three blocks at a time, when possible. */
while (num_blocks >= 3) {
/* Read blocks in. Keep them in registers for XOR later. */
const uint8x16_t block0 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
const uint8x16_t block1 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
const uint8x16_t block2 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
uint8x16_t tmp0 = block0, tmp1 = block1, tmp2 = block2;
/* Actually do encryption, use optimized asm. */
__asm__ __volatile__ (
AES_DEC_ROUND(10, 0) AES_DEC_ROUND(10, 1) AES_DEC_ROUND(10, 2)
AES_DEC_ROUND(9, 0) AES_DEC_ROUND(9, 1) AES_DEC_ROUND(9, 2)
AES_DEC_ROUND(8, 0) AES_DEC_ROUND(8, 1) AES_DEC_ROUND(8, 2)
AES_DEC_ROUND(7, 0) AES_DEC_ROUND(7, 1) AES_DEC_ROUND(7, 2)
AES_DEC_ROUND(6, 0) AES_DEC_ROUND(6, 1) AES_DEC_ROUND(6, 2)
AES_DEC_ROUND(5, 0) AES_DEC_ROUND(5, 1) AES_DEC_ROUND(5, 2)
AES_DEC_ROUND(4, 0) AES_DEC_ROUND(4, 1) AES_DEC_ROUND(4, 2)
AES_DEC_ROUND(3, 0) AES_DEC_ROUND(3, 1) AES_DEC_ROUND(3, 2)
AES_DEC_ROUND(2, 0) AES_DEC_ROUND(2, 1) AES_DEC_ROUND(2, 2)
AES_DEC_SECOND_LAST_ROUND(1, 0) AES_DEC_SECOND_LAST_ROUND(1, 1) AES_DEC_SECOND_LAST_ROUND(1, 2)
AES_DEC_LAST_ROUND(0, 0) AES_DEC_LAST_ROUND(0, 1) AES_DEC_LAST_ROUND(0, 2)
: AES_ENC_DEC_OUTPUT_THREE_BLOCKS()
: AES_ENC_DEC_INPUT_ROUND_KEY(0),
AES_ENC_DEC_INPUT_ROUND_KEY(1),
AES_ENC_DEC_INPUT_ROUND_KEY(2),
AES_ENC_DEC_INPUT_ROUND_KEY(3),
AES_ENC_DEC_INPUT_ROUND_KEY(4),
AES_ENC_DEC_INPUT_ROUND_KEY(5),
AES_ENC_DEC_INPUT_ROUND_KEY(6),
AES_ENC_DEC_INPUT_ROUND_KEY(7),
AES_ENC_DEC_INPUT_ROUND_KEY(8),
AES_ENC_DEC_INPUT_ROUND_KEY(9),
AES_ENC_DEC_INPUT_ROUND_KEY(10)
);
/* Do XOR for CBC. */
tmp0 = veorq_u8(tmp0, cur_iv);
tmp1 = veorq_u8(tmp1, block0);
tmp2 = veorq_u8(tmp2, block1);
cur_iv = block2;
/* Store to output. */
vst1q_u8(dst_u8, tmp0);
dst_u8 += AES_BLOCK_SIZE;
vst1q_u8(dst_u8, tmp1);
dst_u8 += AES_BLOCK_SIZE;
vst1q_u8(dst_u8, tmp2);
dst_u8 += AES_BLOCK_SIZE;
num_blocks -= 3;
}
/* Process last block or two individually. */
while (num_blocks >= 1) {
/* Read block in, keep in register for IV later. */
const uint8x16_t block0 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
uint8x16_t tmp0 = block0;
/* Actually do encryption, use optimized asm. */
__asm__ __volatile__ (
AES_DEC_ROUND(10, 0)
AES_DEC_ROUND(9, 0)
AES_DEC_ROUND(8, 0)
AES_DEC_ROUND(7, 0)
AES_DEC_ROUND(6, 0)
AES_DEC_ROUND(5, 0)
AES_DEC_ROUND(4, 0)
AES_DEC_ROUND(3, 0)
AES_DEC_ROUND(2, 0)
AES_DEC_SECOND_LAST_ROUND(1, 0)
AES_DEC_LAST_ROUND(0, 0)
: AES_ENC_DEC_OUTPUT_ONE_BLOCK()
: AES_ENC_DEC_INPUT_ROUND_KEY(0),
AES_ENC_DEC_INPUT_ROUND_KEY(1),
AES_ENC_DEC_INPUT_ROUND_KEY(2),
AES_ENC_DEC_INPUT_ROUND_KEY(3),
AES_ENC_DEC_INPUT_ROUND_KEY(4),
AES_ENC_DEC_INPUT_ROUND_KEY(5),
AES_ENC_DEC_INPUT_ROUND_KEY(6),
AES_ENC_DEC_INPUT_ROUND_KEY(7),
AES_ENC_DEC_INPUT_ROUND_KEY(8),
AES_ENC_DEC_INPUT_ROUND_KEY(9),
AES_ENC_DEC_INPUT_ROUND_KEY(10)
);
/* Do XOR for CBC. */
tmp0 = veorq_u8(tmp0, cur_iv);
cur_iv = block0;
/* Store to output. */
vst1q_u8(dst_u8, tmp0);
dst_u8 += AES_BLOCK_SIZE;
num_blocks--;
}
vst1q_u8(ctx->iv, cur_iv);
}
size_t aes128CbcEncrypt(Aes128CbcContext *ctx, void *dst, const void *src, size_t size) {
CRYPT_FUNC_BODY(_aes128CbcEncryptBlocks);
}
size_t aes128CbcDecrypt(Aes128CbcContext *ctx, void *dst, const void *src, size_t size) {
CRYPT_FUNC_BODY(_aes128CbcDecryptBlocks);
}
void aes192CbcContextCreate(Aes192CbcContext *out, const void *key, const void *iv, bool is_encryptor) {
/* Initialize inner context. */
aes192ContextCreate(&out->aes_ctx, key, is_encryptor);
aes192CbcContextResetIv(out, iv);
}
void aes192CbcContextResetIv(Aes192CbcContext *ctx, const void *iv) {
/* Set IV, nothing is buffered. */
memcpy(ctx->iv, iv, sizeof(ctx->iv));
memset(ctx->buffer, 0, sizeof(ctx->buffer));
ctx->num_buffered = 0;
}
static inline void _aes192CbcEncryptBlocks(Aes192CbcContext *ctx, u8 *dst_u8, const u8 *src_u8, size_t num_blocks) {
/* Preload all round keys + iv into neon registers. */
DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2);
DECLARE_ROUND_KEY_VAR(3);
DECLARE_ROUND_KEY_VAR(4);
DECLARE_ROUND_KEY_VAR(5);
DECLARE_ROUND_KEY_VAR(6);
DECLARE_ROUND_KEY_VAR(7);
DECLARE_ROUND_KEY_VAR(8);
DECLARE_ROUND_KEY_VAR(9);
DECLARE_ROUND_KEY_VAR(10);
DECLARE_ROUND_KEY_VAR(11);
DECLARE_ROUND_KEY_VAR(12);
uint8x16_t cur_iv = vld1q_u8(ctx->iv);
/* Process last block or two individually. */
while (num_blocks >= 1) {
/* Read block in, xor with IV. */
uint8x16_t tmp0 = veorq_u8(cur_iv, vld1q_u8(src_u8));
src_u8 += AES_BLOCK_SIZE;
/* Actually do encryption, use optimized asm. */
__asm__ __volatile__ (
AES_ENC_ROUND(0, 0)
AES_ENC_ROUND(1, 0)
AES_ENC_ROUND(2, 0)
AES_ENC_ROUND(3, 0)
AES_ENC_ROUND(4, 0)
AES_ENC_ROUND(5, 0)
AES_ENC_ROUND(6, 0)
AES_ENC_ROUND(7, 0)
AES_ENC_ROUND(8, 0)
AES_ENC_ROUND(9, 0)
AES_ENC_ROUND(10, 0)
AES_ENC_SECOND_LAST_ROUND(11, 0)
AES_ENC_LAST_ROUND(12, 0)
: AES_ENC_DEC_OUTPUT_ONE_BLOCK()
: AES_ENC_DEC_INPUT_ROUND_KEY(0),
AES_ENC_DEC_INPUT_ROUND_KEY(1),
AES_ENC_DEC_INPUT_ROUND_KEY(2),
AES_ENC_DEC_INPUT_ROUND_KEY(3),
AES_ENC_DEC_INPUT_ROUND_KEY(4),
AES_ENC_DEC_INPUT_ROUND_KEY(5),
AES_ENC_DEC_INPUT_ROUND_KEY(6),
AES_ENC_DEC_INPUT_ROUND_KEY(7),
AES_ENC_DEC_INPUT_ROUND_KEY(8),
AES_ENC_DEC_INPUT_ROUND_KEY(9),
AES_ENC_DEC_INPUT_ROUND_KEY(10),
AES_ENC_DEC_INPUT_ROUND_KEY(11),
AES_ENC_DEC_INPUT_ROUND_KEY(12)
);
/* Update IV. */
cur_iv = tmp0;
/* Store to output. */
vst1q_u8(dst_u8, tmp0);
dst_u8 += AES_BLOCK_SIZE;
num_blocks--;
}
vst1q_u8(ctx->iv, cur_iv);
}
static inline void _aes192CbcDecryptBlocks(Aes192CbcContext *ctx, u8 *dst_u8, const u8 *src_u8, size_t num_blocks) {
/* Preload all round keys + iv into neon registers. */
DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2);
DECLARE_ROUND_KEY_VAR(3);
DECLARE_ROUND_KEY_VAR(4);
DECLARE_ROUND_KEY_VAR(5);
DECLARE_ROUND_KEY_VAR(6);
DECLARE_ROUND_KEY_VAR(7);
DECLARE_ROUND_KEY_VAR(8);
DECLARE_ROUND_KEY_VAR(9);
DECLARE_ROUND_KEY_VAR(10);
DECLARE_ROUND_KEY_VAR(11);
DECLARE_ROUND_KEY_VAR(12);
uint8x16_t cur_iv = vld1q_u8(ctx->iv);
/* Process three blocks at a time, when possible. */
while (num_blocks >= 3) {
/* Read blocks in. Keep them in registers for XOR later. */
const uint8x16_t block0 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
const uint8x16_t block1 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
const uint8x16_t block2 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
uint8x16_t tmp0 = block0, tmp1 = block1, tmp2 = block2;
/* Actually do encryption, use optimized asm. */
__asm__ __volatile__ (
AES_DEC_ROUND(12, 0) AES_DEC_ROUND(12, 1) AES_DEC_ROUND(12, 2)
AES_DEC_ROUND(11, 0) AES_DEC_ROUND(11, 1) AES_DEC_ROUND(11, 2)
AES_DEC_ROUND(10, 0) AES_DEC_ROUND(10, 1) AES_DEC_ROUND(10, 2)
AES_DEC_ROUND(9, 0) AES_DEC_ROUND(9, 1) AES_DEC_ROUND(9, 2)
AES_DEC_ROUND(8, 0) AES_DEC_ROUND(8, 1) AES_DEC_ROUND(8, 2)
AES_DEC_ROUND(7, 0) AES_DEC_ROUND(7, 1) AES_DEC_ROUND(7, 2)
AES_DEC_ROUND(6, 0) AES_DEC_ROUND(6, 1) AES_DEC_ROUND(6, 2)
AES_DEC_ROUND(5, 0) AES_DEC_ROUND(5, 1) AES_DEC_ROUND(5, 2)
AES_DEC_ROUND(4, 0) AES_DEC_ROUND(4, 1) AES_DEC_ROUND(4, 2)
AES_DEC_ROUND(3, 0) AES_DEC_ROUND(3, 1) AES_DEC_ROUND(3, 2)
AES_DEC_ROUND(2, 0) AES_DEC_ROUND(2, 1) AES_DEC_ROUND(2, 2)
AES_DEC_SECOND_LAST_ROUND(1, 0) AES_DEC_SECOND_LAST_ROUND(1, 1) AES_DEC_SECOND_LAST_ROUND(1, 2)
AES_DEC_LAST_ROUND(0, 0) AES_DEC_LAST_ROUND(0, 1) AES_DEC_LAST_ROUND(0, 2)
: AES_ENC_DEC_OUTPUT_THREE_BLOCKS()
: AES_ENC_DEC_INPUT_ROUND_KEY(0),
AES_ENC_DEC_INPUT_ROUND_KEY(1),
AES_ENC_DEC_INPUT_ROUND_KEY(2),
AES_ENC_DEC_INPUT_ROUND_KEY(3),
AES_ENC_DEC_INPUT_ROUND_KEY(4),
AES_ENC_DEC_INPUT_ROUND_KEY(5),
AES_ENC_DEC_INPUT_ROUND_KEY(6),
AES_ENC_DEC_INPUT_ROUND_KEY(7),
AES_ENC_DEC_INPUT_ROUND_KEY(8),
AES_ENC_DEC_INPUT_ROUND_KEY(9),
AES_ENC_DEC_INPUT_ROUND_KEY(10),
AES_ENC_DEC_INPUT_ROUND_KEY(11),
AES_ENC_DEC_INPUT_ROUND_KEY(12)
);
/* Do XOR for CBC. */
tmp0 = veorq_u8(tmp0, cur_iv);
tmp1 = veorq_u8(tmp1, block0);
tmp2 = veorq_u8(tmp2, block1);
cur_iv = block2;
/* Store to output. */
vst1q_u8(dst_u8, tmp0);
dst_u8 += AES_BLOCK_SIZE;
vst1q_u8(dst_u8, tmp1);
dst_u8 += AES_BLOCK_SIZE;
vst1q_u8(dst_u8, tmp2);
dst_u8 += AES_BLOCK_SIZE;
num_blocks -= 3;
}
/* Process last block or two individually. */
while (num_blocks >= 1) {
/* Read block in, keep in register for IV later. */
const uint8x16_t block0 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
uint8x16_t tmp0 = block0;
/* Actually do encryption, use optimized asm. */
__asm__ __volatile__ (
AES_DEC_ROUND(12, 0)
AES_DEC_ROUND(11, 0)
AES_DEC_ROUND(10, 0)
AES_DEC_ROUND(9, 0)
AES_DEC_ROUND(8, 0)
AES_DEC_ROUND(7, 0)
AES_DEC_ROUND(6, 0)
AES_DEC_ROUND(5, 0)
AES_DEC_ROUND(4, 0)
AES_DEC_ROUND(3, 0)
AES_DEC_ROUND(2, 0)
AES_DEC_SECOND_LAST_ROUND(1, 0)
AES_DEC_LAST_ROUND(0, 0)
: AES_ENC_DEC_OUTPUT_ONE_BLOCK()
: AES_ENC_DEC_INPUT_ROUND_KEY(0),
AES_ENC_DEC_INPUT_ROUND_KEY(1),
AES_ENC_DEC_INPUT_ROUND_KEY(2),
AES_ENC_DEC_INPUT_ROUND_KEY(3),
AES_ENC_DEC_INPUT_ROUND_KEY(4),
AES_ENC_DEC_INPUT_ROUND_KEY(5),
AES_ENC_DEC_INPUT_ROUND_KEY(6),
AES_ENC_DEC_INPUT_ROUND_KEY(7),
AES_ENC_DEC_INPUT_ROUND_KEY(8),
AES_ENC_DEC_INPUT_ROUND_KEY(9),
AES_ENC_DEC_INPUT_ROUND_KEY(10),
AES_ENC_DEC_INPUT_ROUND_KEY(11),
AES_ENC_DEC_INPUT_ROUND_KEY(12)
);
/* Do XOR for CBC. */
tmp0 = veorq_u8(tmp0, cur_iv);
cur_iv = block0;
/* Store to output. */
vst1q_u8(dst_u8, tmp0);
dst_u8 += AES_BLOCK_SIZE;
num_blocks--;
}
vst1q_u8(ctx->iv, cur_iv);
}
size_t aes192CbcEncrypt(Aes192CbcContext *ctx, void *dst, const void *src, size_t size) {
CRYPT_FUNC_BODY(_aes192CbcEncryptBlocks);
}
size_t aes192CbcDecrypt(Aes192CbcContext *ctx, void *dst, const void *src, size_t size) {
CRYPT_FUNC_BODY(_aes192CbcDecryptBlocks);
}
void aes256CbcContextCreate(Aes256CbcContext *out, const void *key, const void *iv, bool is_encryptor) {
/* Initialize inner context. */
aes256ContextCreate(&out->aes_ctx, key, is_encryptor);
aes256CbcContextResetIv(out, iv);
}
void aes256CbcContextResetIv(Aes256CbcContext *ctx, const void *iv) {
/* Set IV, nothing is buffered. */
memcpy(ctx->iv, iv, sizeof(ctx->iv));
memset(ctx->buffer, 0, sizeof(ctx->buffer));
ctx->num_buffered = 0;
}
static inline void _aes256CbcEncryptBlocks(Aes256CbcContext *ctx, u8 *dst_u8, const u8 *src_u8, size_t num_blocks) {
/* Preload all round keys + iv into neon registers. */
DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2);
DECLARE_ROUND_KEY_VAR(3);
DECLARE_ROUND_KEY_VAR(4);
DECLARE_ROUND_KEY_VAR(5);
DECLARE_ROUND_KEY_VAR(6);
DECLARE_ROUND_KEY_VAR(7);
DECLARE_ROUND_KEY_VAR(8);
DECLARE_ROUND_KEY_VAR(9);
DECLARE_ROUND_KEY_VAR(10);
DECLARE_ROUND_KEY_VAR(11);
DECLARE_ROUND_KEY_VAR(12);
DECLARE_ROUND_KEY_VAR(13);
DECLARE_ROUND_KEY_VAR(14);
uint8x16_t cur_iv = vld1q_u8(ctx->iv);
/* Process last block or two individually. */
while (num_blocks >= 1) {
/* Read block in, xor with IV. */
uint8x16_t tmp0 = veorq_u8(cur_iv, vld1q_u8(src_u8));
src_u8 += AES_BLOCK_SIZE;
/* Actually do encryption, use optimized asm. */
__asm__ __volatile__ (
AES_ENC_ROUND(0, 0)
AES_ENC_ROUND(1, 0)
AES_ENC_ROUND(2, 0)
AES_ENC_ROUND(3, 0)
AES_ENC_ROUND(4, 0)
AES_ENC_ROUND(5, 0)
AES_ENC_ROUND(6, 0)
AES_ENC_ROUND(7, 0)
AES_ENC_ROUND(8, 0)
AES_ENC_ROUND(9, 0)
AES_ENC_ROUND(10, 0)
AES_ENC_ROUND(11, 0)
AES_ENC_ROUND(12, 0)
AES_ENC_SECOND_LAST_ROUND(13, 0)
AES_ENC_LAST_ROUND(14, 0)
: AES_ENC_DEC_OUTPUT_ONE_BLOCK()
: AES_ENC_DEC_INPUT_ROUND_KEY(0),
AES_ENC_DEC_INPUT_ROUND_KEY(1),
AES_ENC_DEC_INPUT_ROUND_KEY(2),
AES_ENC_DEC_INPUT_ROUND_KEY(3),
AES_ENC_DEC_INPUT_ROUND_KEY(4),
AES_ENC_DEC_INPUT_ROUND_KEY(5),
AES_ENC_DEC_INPUT_ROUND_KEY(6),
AES_ENC_DEC_INPUT_ROUND_KEY(7),
AES_ENC_DEC_INPUT_ROUND_KEY(8),
AES_ENC_DEC_INPUT_ROUND_KEY(9),
AES_ENC_DEC_INPUT_ROUND_KEY(10),
AES_ENC_DEC_INPUT_ROUND_KEY(11),
AES_ENC_DEC_INPUT_ROUND_KEY(12),
AES_ENC_DEC_INPUT_ROUND_KEY(13),
AES_ENC_DEC_INPUT_ROUND_KEY(14)
);
/* Update IV. */
cur_iv = tmp0;
/* Store to output. */
vst1q_u8(dst_u8, tmp0);
dst_u8 += AES_BLOCK_SIZE;
num_blocks--;
}
vst1q_u8(ctx->iv, cur_iv);
}
static inline void _aes256CbcDecryptBlocks(Aes256CbcContext *ctx, u8 *dst_u8, const u8 *src_u8, size_t num_blocks) {
/* Preload all round keys + iv into neon registers. */
DECLARE_ROUND_KEY_VAR(0);
DECLARE_ROUND_KEY_VAR(1);
DECLARE_ROUND_KEY_VAR(2);
DECLARE_ROUND_KEY_VAR(3);
DECLARE_ROUND_KEY_VAR(4);
DECLARE_ROUND_KEY_VAR(5);
DECLARE_ROUND_KEY_VAR(6);
DECLARE_ROUND_KEY_VAR(7);
DECLARE_ROUND_KEY_VAR(8);
DECLARE_ROUND_KEY_VAR(9);
DECLARE_ROUND_KEY_VAR(10);
DECLARE_ROUND_KEY_VAR(11);
DECLARE_ROUND_KEY_VAR(12);
DECLARE_ROUND_KEY_VAR(13);
DECLARE_ROUND_KEY_VAR(14);
uint8x16_t cur_iv = vld1q_u8(ctx->iv);
/* Process three blocks at a time, when possible. */
while (num_blocks >= 3) {
/* Read blocks in. Keep them in registers for XOR later. */
const uint8x16_t block0 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
const uint8x16_t block1 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
const uint8x16_t block2 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
uint8x16_t tmp0 = block0, tmp1 = block1, tmp2 = block2;
/* Actually do encryption, use optimized asm. */
__asm__ __volatile__ (
AES_DEC_ROUND(14, 0) AES_DEC_ROUND(14, 1) AES_DEC_ROUND(14, 2)
AES_DEC_ROUND(13, 0) AES_DEC_ROUND(13, 1) AES_DEC_ROUND(13, 2)
AES_DEC_ROUND(12, 0) AES_DEC_ROUND(12, 1) AES_DEC_ROUND(12, 2)
AES_DEC_ROUND(11, 0) AES_DEC_ROUND(11, 1) AES_DEC_ROUND(11, 2)
AES_DEC_ROUND(10, 0) AES_DEC_ROUND(10, 1) AES_DEC_ROUND(10, 2)
AES_DEC_ROUND(9, 0) AES_DEC_ROUND(9, 1) AES_DEC_ROUND(9, 2)
AES_DEC_ROUND(8, 0) AES_DEC_ROUND(8, 1) AES_DEC_ROUND(8, 2)
AES_DEC_ROUND(7, 0) AES_DEC_ROUND(7, 1) AES_DEC_ROUND(7, 2)
AES_DEC_ROUND(6, 0) AES_DEC_ROUND(6, 1) AES_DEC_ROUND(6, 2)
AES_DEC_ROUND(5, 0) AES_DEC_ROUND(5, 1) AES_DEC_ROUND(5, 2)
AES_DEC_ROUND(4, 0) AES_DEC_ROUND(4, 1) AES_DEC_ROUND(4, 2)
AES_DEC_ROUND(3, 0) AES_DEC_ROUND(3, 1) AES_DEC_ROUND(3, 2)
AES_DEC_ROUND(2, 0) AES_DEC_ROUND(2, 1) AES_DEC_ROUND(2, 2)
AES_DEC_SECOND_LAST_ROUND(1, 0) AES_DEC_SECOND_LAST_ROUND(1, 1) AES_DEC_SECOND_LAST_ROUND(1, 2)
AES_DEC_LAST_ROUND(0, 0) AES_DEC_LAST_ROUND(0, 1) AES_DEC_LAST_ROUND(0, 2)
: AES_ENC_DEC_OUTPUT_THREE_BLOCKS()
: AES_ENC_DEC_INPUT_ROUND_KEY(0),
AES_ENC_DEC_INPUT_ROUND_KEY(1),
AES_ENC_DEC_INPUT_ROUND_KEY(2),
AES_ENC_DEC_INPUT_ROUND_KEY(3),
AES_ENC_DEC_INPUT_ROUND_KEY(4),
AES_ENC_DEC_INPUT_ROUND_KEY(5),
AES_ENC_DEC_INPUT_ROUND_KEY(6),
AES_ENC_DEC_INPUT_ROUND_KEY(7),
AES_ENC_DEC_INPUT_ROUND_KEY(8),
AES_ENC_DEC_INPUT_ROUND_KEY(9),
AES_ENC_DEC_INPUT_ROUND_KEY(10),
AES_ENC_DEC_INPUT_ROUND_KEY(11),
AES_ENC_DEC_INPUT_ROUND_KEY(12),
AES_ENC_DEC_INPUT_ROUND_KEY(13),
AES_ENC_DEC_INPUT_ROUND_KEY(14)
);
/* Do XOR for CBC. */
tmp0 = veorq_u8(tmp0, cur_iv);
tmp1 = veorq_u8(tmp1, block0);
tmp2 = veorq_u8(tmp2, block1);
cur_iv = block2;
/* Store to output. */
vst1q_u8(dst_u8, tmp0);
dst_u8 += AES_BLOCK_SIZE;
vst1q_u8(dst_u8, tmp1);
dst_u8 += AES_BLOCK_SIZE;
vst1q_u8(dst_u8, tmp2);
dst_u8 += AES_BLOCK_SIZE;
num_blocks -= 3;
}
/* Process last block or two individually. */
while (num_blocks >= 1) {
/* Read block in, keep in register for IV later. */
const uint8x16_t block0 = vld1q_u8(src_u8);
src_u8 += AES_BLOCK_SIZE;
uint8x16_t tmp0 = block0;
/* Actually do encryption, use optimized asm. */
__asm__ __volatile__ (
AES_DEC_ROUND(14, 0)
AES_DEC_ROUND(13, 0)
AES_DEC_ROUND(12, 0)
AES_DEC_ROUND(11, 0)
AES_DEC_ROUND(10, 0)
AES_DEC_ROUND(9, 0)
AES_DEC_ROUND(8, 0)
AES_DEC_ROUND(7, 0)
AES_DEC_ROUND(6, 0)
AES_DEC_ROUND(5, 0)
AES_DEC_ROUND(4, 0)
AES_DEC_ROUND(3, 0)
AES_DEC_ROUND(2, 0)
AES_DEC_SECOND_LAST_ROUND(1, 0)
AES_DEC_LAST_ROUND(0, 0)
: AES_ENC_DEC_OUTPUT_ONE_BLOCK()
: AES_ENC_DEC_INPUT_ROUND_KEY(0),
AES_ENC_DEC_INPUT_ROUND_KEY(1),
AES_ENC_DEC_INPUT_ROUND_KEY(2),
AES_ENC_DEC_INPUT_ROUND_KEY(3),
AES_ENC_DEC_INPUT_ROUND_KEY(4),
AES_ENC_DEC_INPUT_ROUND_KEY(5),
AES_ENC_DEC_INPUT_ROUND_KEY(6),
AES_ENC_DEC_INPUT_ROUND_KEY(7),
AES_ENC_DEC_INPUT_ROUND_KEY(8),
AES_ENC_DEC_INPUT_ROUND_KEY(9),
AES_ENC_DEC_INPUT_ROUND_KEY(10),
AES_ENC_DEC_INPUT_ROUND_KEY(11),
AES_ENC_DEC_INPUT_ROUND_KEY(12),
AES_ENC_DEC_INPUT_ROUND_KEY(13),
AES_ENC_DEC_INPUT_ROUND_KEY(14)
);
/* Do XOR for CBC. */
tmp0 = veorq_u8(tmp0, cur_iv);
cur_iv = block0;
/* Store to output. */
vst1q_u8(dst_u8, tmp0);
dst_u8 += AES_BLOCK_SIZE;
num_blocks--;
}
vst1q_u8(ctx->iv, cur_iv);
}
size_t aes256CbcEncrypt(Aes256CbcContext *ctx, void *dst, const void *src, size_t size) {
CRYPT_FUNC_BODY(_aes256CbcEncryptBlocks);
}
size_t aes256CbcDecrypt(Aes256CbcContext *ctx, void *dst, const void *src, size_t size) {
CRYPT_FUNC_BODY(_aes256CbcDecryptBlocks);
}