libnx/nx/source/runtime/resolver.c

619 lines
19 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include "result.h"
//#include "kernel/random.h"
#include "services/sfdnsres.h"
#include "services/nifm.h"
#include "runtime/hosversion.h"
#include "runtime/resolver.h"
__thread int h_errno;
static __thread Result g_resolverResult;
static __thread u32 g_resolverCancelHandle; // ResolverOptionKey::RequestCancelHandleInteger
static __thread bool g_resolverDisableServiceDiscovery; // ResolverOptionKey::RequestEnableServiceDiscoveryBoolean (inverted)
static __thread bool g_resolverDisableDnsCache; // ResolverOptionKey::RequestEnableDnsCacheBoolean (inverted)
static size_t g_resolverHostByNameBufferSize = 0x200; // ResolverOptionLocalKey::GetHostByNameBufferSizeUnsigned64
static size_t g_resolverHostByAddrBufferSize = 0x200; // ResolverOptionLocalKey::GetHostByAddrBufferSizeUnsigned64
static size_t g_resolverAddrInfoBufferSize = 0x1000; // ResolverOptionLocalKey::GetAddrInfoBufferSizeUnsigned64
static size_t g_resolverAddrInfoHintsBufferSize = 0x400; // ResolverOptionLocalKey::GetAddrInfoHintsBufferSizeUnsigned64
Result resolverGetLastResult(void) {
return g_resolverResult;
}
u32 resolverGetCancelHandle(void) {
// ResolverOptionKey::GetCancelHandleInteger on 5.0.0+
/* Below code should be used instead of invoking sfdnsresResolverGetOptionRequest
while (g_resolverCancelHandle == 0)
randomGet(&g_resolverCancelHandle, sizeof(u32));
*/
if (g_resolverCancelHandle == 0)
sfdnsresGetCancelHandleRequest(&g_resolverCancelHandle);
return g_resolverCancelHandle;
}
bool resolverGetEnableServiceDiscovery(void) {
return !g_resolverDisableServiceDiscovery;
}
bool resolverGetEnableDnsCache(void) {
return !g_resolverDisableDnsCache;
}
void resolverSetEnableServiceDiscovery(bool enable) {
g_resolverDisableServiceDiscovery = !enable;
}
void resolverSetEnableDnsCache(bool enable) {
g_resolverDisableDnsCache = !enable;
}
Result resolverCancel(u32 handle) {
// ResolverOptionKey::SetCancelHandleInteger on [5.0.0+]
return sfdnsresCancelRequest(handle);
}
Result resolverRemoveHostnameFromCache(const char* hostname) {
if (hosversionBefore(5,0,0))
return MAKERESULT(Module_Libnx, LibnxError_IncompatSysVer);
return MAKERESULT(Module_Libnx, LibnxError_NotInitialized); // not implemented
}
Result resolverRemoveIpAddressFromCache(u32 ip) {
if (hosversionBefore(5,0,0))
return MAKERESULT(Module_Libnx, LibnxError_IncompatSysVer);
return MAKERESULT(Module_Libnx, LibnxError_NotInitialized); // not implemented
}
static struct hostent *_resolverDeserializeHostent(const void *out_he_serialized) {
const char *buf = (const char *)out_he_serialized;
const char *pos, *pos_aliases, *pos_addresses;
size_t name_size, total_aliases_size = 0;
size_t nb_addresses;
size_t nb_aliases = 0;
size_t nb_pos;
size_t len;
int addrtype, addrlen;
struct hostent *he;
// Calculate the size of the buffer to allocate
pos = buf;
name_size = strlen(pos) + 1;
pos += name_size;
nb_aliases = ntohl(*(const u32 *)pos);
pos += 4;
pos_aliases = pos;
if (nb_aliases) {
for (nb_pos = 0, len = 1; nb_pos < nb_aliases; nb_pos++, pos += len + 1)
len = strlen(pos);
}
total_aliases_size = pos - pos_aliases;
// Nintendo uses unsigned short here...
addrtype = htons(*(const u16 *)pos);
pos += 2;
addrlen = htons(*(const u16 *)pos);
pos += 2;
// sfdnsres will only return IPv4 addresses for the "host" commands
if (addrtype != AF_INET || addrlen != sizeof(struct in_addr)) {
h_errno = NO_ADDRESS;
errno = EINVAL;
return NULL;
}
// The official hostent (de)serializer doesn't support IPv6, at least not currently.
nb_addresses = ntohl(*(const u32 *)pos);
pos += 4;
pos_addresses = pos;
pos += addrlen * nb_addresses;
he = malloc(
sizeof(struct hostent)
+ name_size
+ 8 * (nb_aliases + 1 + nb_addresses + 1)
+ total_aliases_size
+ addrlen * nb_addresses
);
if (!he) {
h_errno = NETDB_INTERNAL;
errno = ENOMEM;
return NULL;
}
if (name_size == 1) {
he->h_name = NULL;
he->h_aliases = (char**)((char*)he + sizeof(struct hostent));
}
else {
he->h_name = (char*)he + sizeof(struct hostent);
memcpy(he->h_name, buf, name_size);
he->h_aliases = (char **)(he->h_name + name_size);
}
he->h_addrtype = addrtype;
he->h_length = addrlen;
he->h_addr_list = he->h_aliases + nb_aliases + 1;
if (nb_aliases) {
char *alias = (char *)(he->h_addr_list + nb_addresses + 1);
memcpy(alias, pos_aliases, total_aliases_size);
for(size_t i = 0; i < nb_aliases; i++) {
he->h_aliases[i] = alias;
alias += strlen(alias) + 1;
}
}
he->h_aliases[nb_aliases] = NULL;
if (nb_addresses) {
struct in_addr *addresses = (struct in_addr *)(he->h_addr_list + nb_addresses + 1 + total_aliases_size);
memcpy(addresses, pos_addresses, addrlen * nb_addresses);
for (size_t i = 0; i < nb_addresses; i ++) {
he->h_addr_list[i] = (char *)&addresses[i];
addresses[i].s_addr = ntohl(addresses[i].s_addr); // lol Nintendo
}
}
he->h_addr_list[nb_addresses] = NULL;
return he;
}
struct addrinfo_serialized_hdr {
u32 magic;
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
u32 ai_addrlen;
};
static size_t _resolverSerializeAddrInfo(struct addrinfo_serialized_hdr *hdr, const struct addrinfo *ai) {
size_t subsize1 = (ai->ai_addr && ai->ai_addrlen) ? ai->ai_addrlen : 4; // not posix-compliant ?
size_t subsize2 = ai->ai_canonname ? strlen(ai->ai_canonname) + 1 : 1;
hdr->magic = htonl(0xBEEFCAFE); // Seriously.
hdr->ai_flags = htonl(ai->ai_flags);
hdr->ai_family = htonl(ai->ai_family);
hdr->ai_socktype = htonl(ai->ai_socktype);
hdr->ai_protocol = htonl(ai->ai_protocol);
hdr->ai_addrlen = ai->ai_addr ? htonl((u32)ai->ai_addrlen) : 0;
if (hdr->ai_addrlen == 0)
*(u32 *)((u8 *)hdr + sizeof(struct addrinfo_serialized_hdr)) = 0;
else {
// Nintendo just byteswaps everything recursively... even fields that are already byteswapped.
switch (ai->ai_family) {
case AF_INET: {
struct sockaddr_in sa = {0};
memcpy(&sa, ai->ai_addr, subsize1 <= sizeof(struct sockaddr_in) ? subsize1 : sizeof(struct sockaddr_in));
sa.sin_port = htons(sa.sin_port);
sa.sin_addr.s_addr = htonl(sa.sin_addr.s_addr);
memcpy((u8 *)hdr + sizeof(struct addrinfo_serialized_hdr), &sa, sizeof(struct sockaddr_in));
break;
}
case AF_INET6: {
struct sockaddr_in6 sa6 = {0};
memcpy(&sa6, ai->ai_addr, subsize1 <= sizeof(struct sockaddr_in6) ? subsize1 : sizeof(struct sockaddr_in6));
sa6.sin6_port = htons(sa6.sin6_port);
sa6.sin6_flowinfo = htonl(sa6.sin6_flowinfo);
sa6.sin6_scope_id = htonl(sa6.sin6_scope_id);
memcpy((u8 *)hdr + sizeof(struct addrinfo_serialized_hdr), &sa6, sizeof(struct sockaddr_in6));
break;
}
default:
memcpy((u8 *)hdr + sizeof(struct addrinfo_serialized_hdr), ai->ai_addr, subsize1);
}
}
if (ai->ai_canonname)
memcpy((u8 *)hdr + sizeof(struct addrinfo_serialized_hdr) + subsize1, ai->ai_canonname, subsize2);
else
*((u8 *)hdr + sizeof(struct addrinfo_serialized_hdr) + subsize1) = 0;
return sizeof(struct addrinfo_serialized_hdr) + subsize1 + subsize2;
}
static struct addrinfo_serialized_hdr *_resolverSerializeAddrInfoList(size_t *out_size, const struct addrinfo *ai) {
size_t total_addrlen = 0, total_namelen = 0, n = 0;
for (const struct addrinfo *node = ai; node; node = node->ai_next) {
total_addrlen += node->ai_addrlen ? node->ai_addrlen : 4;
total_namelen += node->ai_canonname ? strlen(node->ai_canonname) + 1 : 1;
n++;
}
size_t reqsize = sizeof(struct addrinfo_serialized_hdr) * n + total_addrlen + total_namelen + 4;
if (reqsize > g_resolverAddrInfoHintsBufferSize)
return NULL;
struct addrinfo_serialized_hdr *out = malloc(reqsize);
if (!out)
return NULL;
struct addrinfo_serialized_hdr *pos = out;
for (const struct addrinfo *node = ai; node; node = node->ai_next) {
size_t len = _resolverSerializeAddrInfo(pos, node);
pos = (struct addrinfo_serialized_hdr *)((u8 *)pos + len);
}
*(u32 *)pos = 0; // Sentinel value
*out_size = reqsize;
return out;
}
static struct addrinfo *_resolverDeserializeAddrInfo(size_t *out_len, const struct addrinfo_serialized_hdr *hdr) {
struct addrinfo_node {
struct addrinfo info;
struct sockaddr_storage addr;
char canonname[];
};
size_t subsize1 = hdr->ai_addrlen ? ntohl(hdr->ai_addrlen) : 4;
size_t subsize2 = strlen((const char *)hdr + sizeof(struct addrinfo_serialized_hdr) + subsize1) + 1;
struct addrinfo_node *node = malloc(sizeof(struct addrinfo_node) + subsize2);
*out_len = sizeof(struct addrinfo_serialized_hdr) + subsize1 + subsize2;
if (!node)
return NULL;
node->info.ai_flags = ntohl(hdr->ai_flags);
node->info.ai_family = ntohl(hdr->ai_family);
node->info.ai_socktype = ntohl(hdr->ai_socktype);
node->info.ai_protocol = ntohl(hdr->ai_protocol);
node->info.ai_addrlen = ntohl(hdr->ai_addrlen);
// getaddrinfo enforces addrlen = sizeof(struct sockaddr) and family = AF_INET, ie. only IPv4, anyways...
if (node->info.ai_addrlen > sizeof(struct sockaddr_storage))
node->info.ai_addrlen = sizeof(struct sockaddr_storage);
if (node->info.ai_addrlen == 0)
node->info.ai_addr = NULL;
else {
node->info.ai_addr = (struct sockaddr *)&node->addr;
memcpy(node->info.ai_addr, (const u8 *)hdr + sizeof(struct addrinfo_serialized_hdr), node->info.ai_addrlen);
// Nintendo just byteswaps everything recursively... even fields that are already byteswapped.
switch (node->info.ai_family) {
case AF_INET: {
struct sockaddr_in *sa = (struct sockaddr_in *)node->info.ai_addr;
sa->sin_len = 6;
sa->sin_port = ntohs(sa->sin_port);
sa->sin_addr.s_addr = ntohl(sa->sin_addr.s_addr);
break;
}
case AF_INET6: {
struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)node->info.ai_addr;
sa6->sin6_port = ntohs(sa6->sin6_port);
sa6->sin6_flowinfo = ntohl(sa6->sin6_flowinfo);
sa6->sin6_scope_id = ntohl(sa6->sin6_scope_id);
break;
}
default:
break;
}
}
if (subsize2 == 1)
node->info.ai_canonname = NULL;
else {
node->info.ai_canonname = node->canonname;
memcpy(node->info.ai_canonname, (const u8 *)hdr + sizeof(struct addrinfo_serialized_hdr) + subsize1, subsize2);
}
node->info.ai_next = NULL;
return &node->info;
}
static struct addrinfo *_resolverDeserializeAddrInfoList(struct addrinfo_serialized_hdr *hdr) {
struct addrinfo *first = NULL, *prev = NULL;
while (hdr->magic == htonl(0xBEEFCAFE)) {
size_t len;
struct addrinfo *node = _resolverDeserializeAddrInfo(&len, hdr);
if (!node) {
if (first)
freeaddrinfo(first);
return NULL;
}
if (!first)
first = node;
if (prev)
prev->ai_next = node;
prev = node;
hdr = (struct addrinfo_serialized_hdr *)((u8 *)hdr + len);
}
return first;
}
void freehostent(struct hostent *he) {
free(he);
}
void freeaddrinfo(struct addrinfo *ai) {
for (struct addrinfo *node = ai, *next; node; node = next) {
next = node->ai_next;
free(node);
}
}
struct hostent *gethostbyname(const char *name) {
if (!name) {
h_errno = HOST_NOT_FOUND;
errno = EINVAL;
return NULL;
}
if (!g_resolverHostByNameBufferSize) {
h_errno = NETDB_INTERNAL;
errno = ENOSPC;
return NULL;
}
void *out_serialized = malloc(g_resolverHostByNameBufferSize);
if (!out_serialized) {
h_errno = NETDB_INTERNAL;
errno = ENOMEM;
return NULL;
}
Result rc = sfdnsresGetHostByNameRequest(
g_resolverCancelHandle,
!g_resolverDisableServiceDiscovery,
name,
(u32*)&h_errno,
(u32*)&errno,
out_serialized, g_resolverHostByNameBufferSize,
NULL);
g_resolverCancelHandle = 0;
g_resolverResult = rc;
if (R_FAILED(rc)) {
if (R_MODULE(rc) == 21) // SM
errno = EAGAIN;
else if (R_MODULE(rc) == 1) // Kernel
errno = EFAULT;
else
errno = EPIPE;
h_errno = NETDB_INTERNAL;
}
struct hostent *ret = NULL;
if (h_errno == NETDB_SUCCESS)
ret = _resolverDeserializeHostent(out_serialized);
free(out_serialized);
return ret;
}
struct hostent *gethostbyaddr(const void *addr, socklen_t len, int type) {
if (!addr || !len) {
h_errno = HOST_NOT_FOUND;
errno = EINVAL;
return NULL;
}
if (type != AF_INET) {
h_errno = HOST_NOT_FOUND;
errno = EOPNOTSUPP;
return NULL;
}
if (!g_resolverHostByAddrBufferSize) {
h_errno = NETDB_INTERNAL;
errno = ENOSPC;
return NULL;
}
void *out_serialized = malloc(g_resolverHostByAddrBufferSize);
if (!out_serialized) {
h_errno = NETDB_INTERNAL;
errno = ENOMEM;
return NULL;
}
Result rc = sfdnsresGetHostByAddrRequest(
addr, len,
type,
g_resolverCancelHandle,
(void*)&h_errno,
(void*)&errno,
out_serialized, g_resolverHostByAddrBufferSize,
NULL);
g_resolverCancelHandle = 0;
g_resolverResult = rc;
if (R_FAILED(rc)) {
if (R_MODULE(rc) == 21) // SM
errno = EAGAIN;
else if (R_MODULE(rc) == 1) // Kernel
errno = EFAULT;
else
errno = EPIPE;
h_errno = NETDB_INTERNAL;
}
struct hostent *ret = NULL;
if (h_errno == NETDB_SUCCESS)
ret = _resolverDeserializeHostent(out_serialized);
free(out_serialized);
return ret;
}
const char *hstrerror(int err) {
static __thread char buf[0x80]; // ResolverOptionLocalKey::GetHostErrorStringBufferSizeUnsigned64
Result rc = sfdnsresGetHostStringErrorRequest(err, buf, sizeof(buf));
if(R_FAILED(rc)) // a bit limiting, given the broad range of errors the kernel can give to us...
strcpy(buf, "System busy, try again.");
g_resolverResult = rc;
return buf;
}
void herror(const char *str) {
fprintf(stderr, "%s: %s\n", str, hstrerror(h_errno));
}
const char *gai_strerror(int err) {
static __thread char buf[0x80]; // ResolverOptionLocalKey::GaiErrorStringBufferSizeUnsigned64
Result rc = sfdnsresGetGaiStringErrorRequest(err, buf, sizeof(buf));
if(R_FAILED(rc))
strcpy(buf, "System busy, try again.");
g_resolverResult = rc;
return buf;
}
int getaddrinfo(const char *node, const char *service, const struct addrinfo *hints, struct addrinfo **res) {
if (!node && !service)
return EAI_NONAME;
if (!res) {
errno = EINVAL;
return EAI_SYSTEM;
}
if (!g_resolverAddrInfoBufferSize) {
errno = ENOSPC;
return EAI_SYSTEM;
}
size_t hints_sz = 0;
struct addrinfo_serialized_hdr *hints_serialized = NULL;
if (hints) {
hints_serialized = _resolverSerializeAddrInfoList(&hints_sz, hints);
if (!hints_serialized) {
errno = ENOMEM;
return EAI_MEMORY;
}
}
struct addrinfo_serialized_hdr *out_serialized = malloc(g_resolverAddrInfoBufferSize);
if (!out_serialized) {
free(hints_serialized);
errno = ENOMEM;
return EAI_FAIL;
}
s32 ret = 0;
Result rc = sfdnsresGetAddrInfoRequest(
g_resolverCancelHandle,
!g_resolverDisableServiceDiscovery,
node,
service,
hints_serialized, hints_sz,
out_serialized, g_resolverAddrInfoBufferSize,
(u32*)&errno,
&ret,
NULL);
g_resolverResult = rc;
g_resolverCancelHandle = 0;
free(hints_serialized);
if (R_FAILED(rc)) {
if (R_MODULE(rc) == 21) // SM
errno = EAGAIN;
else if (R_MODULE(rc) == 1) // Kernel
errno = EFAULT;
else
errno = EPIPE;
ret = EAI_SYSTEM;
}
if (ret == 0) {
*res = _resolverDeserializeAddrInfoList(out_serialized);
if (!*res) {
errno = ENOMEM;
ret = EAI_MEMORY;
}
}
free(out_serialized);
return ret;
}
int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *host, socklen_t hostlen,
char *serv, socklen_t servlen,
int flags) {
s32 ret = 0;
Result rc = sfdnsresGetNameInfoRequest(
flags,
sa, salen,
host, hostlen,
serv, servlen,
g_resolverCancelHandle,
(u32*)&errno,
&ret);
g_resolverResult = rc;
g_resolverCancelHandle = 0;
if (R_FAILED(rc)) {
if (R_MODULE(rc) == 21) // SM
errno = EAGAIN;
else if (R_MODULE(rc) == 1) // Kernel
errno = EFAULT;
else
errno = EPIPE;
ret = EAI_SYSTEM;
}
return ret;
}
long gethostid(void) {
u32 id = INADDR_LOOPBACK;
Result rc = nifmInitialize(NifmServiceType_User);
if (R_SUCCEEDED(rc)) {
rc = nifmGetCurrentIpAddress(&id);
nifmExit();
}
g_resolverResult = rc;
return id;
}
int gethostname(char *name, size_t namelen) {
// The Switch doesn't have a proper name, so let's use its IP
struct in_addr in;
in.s_addr = gethostid();
const char *hostname = inet_ntop(AF_INET, &in, name, namelen);
return hostname ? 0 : -1;
}
// Unimplementable functions, left for compliance:
struct hostent *gethostent(void) { h_errno = NO_RECOVERY; errno = ENOSYS; return NULL; }
struct netent *getnetbyaddr(uint32_t a, int b) { (void)a; (void)b; h_errno = NO_RECOVERY; errno = ENOSYS; return NULL; }
struct netent *getnetbyname(const char *s) { (void)s; h_errno = NO_RECOVERY; errno = ENOSYS; return NULL; }
struct netent *getnetent(void) { h_errno = NO_RECOVERY; errno = ENOSYS; return NULL; }
struct protoent *getprotobyname(const char *s) { (void)s; h_errno = NO_RECOVERY; errno = ENOSYS; return NULL; }
struct protoent *getprotobynumber(int a) { (void)a; h_errno = NO_RECOVERY; errno = ENOSYS; return NULL; }
struct protoent *getprotoent(void) { h_errno = NO_RECOVERY; errno = ENOSYS; return NULL; }
struct servent *getservbyname(const char *s1, const char *s2) { (void)s1; (void)s2; h_errno = NO_RECOVERY; errno = ENOSYS; return NULL; }
struct servent *getservbyport(int a, const char *s) { (void)a; (void)s; h_errno = NO_RECOVERY; errno = ENOSYS; return NULL; }
struct servent *getservent(void) { h_errno = NO_RECOVERY; errno = ENOSYS; return NULL; }
void sethostent(int a) { (void)a;}
void setnetent(int a) { (void)a;}
void setprotoent(int a) { (void)a; }