libnx/nx/source/runtime/newlib.c
2022-05-02 23:11:24 +01:00

446 lines
9.9 KiB
C

#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/iosupport.h>
#include <sys/time.h>
#include <sys/lock.h>
#include <sys/reent.h>
#include "../internal.h"
#include "types.h"
#include "runtime/env.h"
#include "arm/counter.h"
#include "kernel/mutex.h"
#include "kernel/condvar.h"
#include "kernel/thread.h"
#include "kernel/svc.h"
#include "services/time.h"
#include "runtime/diag.h"
#include "result.h"
#include "alloc.h"
#define THRD_MAIN_HANDLE ((struct __pthread_t*)~(uintptr_t)0)
struct __pthread_t
{
Thread thr;
void *rc;
};
void __attribute__((weak)) NORETURN __libnx_exit(int rc);
extern const u8 __tdata_lma[];
extern const u8 __tdata_lma_end[];
extern u8 __tls_start[];
/// TimeType passed to timeGetCurrentTime() during time initialization. If that fails and __nx_time_type isn't TimeType_Default, timeGetCurrentTime() will be called again with TimeType_Default.
__attribute__((weak)) TimeType __nx_time_type = TimeType_Default;
static inline int errno_from_result(Result res)
{
switch (R_VALUE(res)) {
case 0:
return 0;
case KERNELRESULT(TimedOut):
return ETIMEDOUT;
default:
return EIO;
}
}
void __syscall_exit(int rc)
{
if (&__libnx_exit)
__libnx_exit(rc);
for (;;);
}
struct _reent* __syscall_getreent(void)
{
ThreadVars* tv = getThreadVars();
if (tv->magic != THREADVARS_MAGIC)
diagAbortWithResult(MAKERESULT(Module_Libnx, LibnxError_BadReent));
return tv->reent;
}
void __syscall_lock_acquire(_LOCK_T *lock)
{
mutexLock(lock);
}
int __syscall_lock_try_acquire(_LOCK_T *lock)
{
return mutexTryLock(lock) ? 0 : 1;
}
void __syscall_lock_release(_LOCK_T *lock)
{
mutexUnlock(lock);
}
void __syscall_lock_acquire_recursive(_LOCK_RECURSIVE_T *lock)
{
rmutexLock(lock);
}
int __syscall_lock_try_acquire_recursive(_LOCK_RECURSIVE_T *lock)
{
return rmutexTryLock(lock) ? 0 : 1;
}
void __syscall_lock_release_recursive(_LOCK_RECURSIVE_T *lock)
{
rmutexUnlock(lock);
}
int __syscall_cond_signal(_COND_T *cond)
{
return errno_from_result(condvarWakeOne(cond));
}
int __syscall_cond_broadcast(_COND_T *cond)
{
return errno_from_result(condvarWakeAll(cond));
}
int __syscall_cond_wait(_COND_T *cond, _LOCK_T *lock, uint64_t timeout_ns)
{
return errno_from_result(condvarWaitTimeout(cond, lock, timeout_ns));
}
int __syscall_cond_wait_recursive(_COND_T *cond, _LOCK_RECURSIVE_T *lock, uint64_t timeout_ns)
{
uint32_t thread_tag_backup = 0;
if (lock->counter != 1)
return EBADF;
thread_tag_backup = lock->thread_tag;
lock->thread_tag = 0;
lock->counter = 0;
int errcode = errno_from_result(condvarWaitTimeout(cond, &lock->lock, timeout_ns));
lock->thread_tag = thread_tag_backup;
lock->counter = 1;
return errcode;
}
struct __pthread_t *__syscall_thread_self(void)
{
Thread* t = getThreadVars()->thread_ptr;
return t ? (struct __pthread_t *)t : THRD_MAIN_HANDLE;
}
void __syscall_thread_exit(void *value)
{
struct __pthread_t *thread = __syscall_thread_self();
if (thread == THRD_MAIN_HANDLE)
exit(EXIT_FAILURE);
thread->rc = value;
threadExit();
}
typedef struct
{
void* (*func)(void*);
void* arg;
bool thread_started;
Mutex mutex;
CondVar cond;
} __entry_args;
static void __thread_entry(void* __arg)
{
__entry_args* info = (__entry_args*)__arg;
void* (*func)(void*) = info->func;
void* arg = info->arg;
mutexLock(&info->mutex);
info->thread_started = true;
condvarWakeOne(&info->cond);
mutexUnlock(&info->mutex);
void* rc = func(arg);
__syscall_thread_exit(rc);
}
int __syscall_thread_create(struct __pthread_t **thread, void* (*func)(void*), void *arg, void *stack_addr, size_t stack_size)
{
if (((uintptr_t)stack_addr & 0xFFF) || (stack_size & 0xFFF))
return EINVAL;
if (!stack_size)
stack_size = 128*1024;
Result rc;
*thread = NULL;
u64 core_mask = 0;
rc = svcGetInfo(&core_mask, InfoType_CoreMask, CUR_PROCESS_HANDLE, 0);
if (R_FAILED(rc))
return EPERM;
struct __pthread_t* t = (struct __pthread_t*)__libnx_alloc(sizeof(struct __pthread_t));
if (!t)
return ENOMEM;
__entry_args info;
info.func = func;
info.arg = arg;
info.thread_started = false;
mutexInit(&info.mutex);
condvarInit(&info.cond);
rc = threadCreate(&t->thr, __thread_entry, &info, stack_addr, stack_size, 0x3B, -2);
if (R_FAILED(rc))
goto _error1;
rc = svcSetThreadCoreMask(t->thr.handle, -1, core_mask);
if (R_FAILED(rc))
goto _error2;
rc = threadStart(&t->thr);
if (R_FAILED(rc))
goto _error2;
mutexLock(&info.mutex);
while (!info.thread_started)
condvarWait(&info.cond, &info.mutex);
mutexUnlock(&info.mutex);
*thread = t;
return 0;
_error2:
threadClose(&t->thr);
_error1:
__libnx_free(t);
return ENOMEM;
}
void* __syscall_thread_join(struct __pthread_t *thread)
{
if (thread == THRD_MAIN_HANDLE)
return NULL;
Result rc = threadWaitForExit(&thread->thr);
if (R_FAILED(rc))
return NULL;
void* ret = thread->rc;
threadClose(&thread->thr);
__libnx_free(thread);
return ret;
}
/* Unsupported
int __syscall_thread_detach(struct __pthread_t *thread)
{
}
*/
int __syscall_tls_create(uint32_t *key, void (*destructor)(void*))
{
s32 slot_id = threadTlsAlloc(destructor);
if (slot_id >= 0) {
*key = slot_id;
return 0;
}
return EAGAIN;
}
int __syscall_tls_set(uint32_t key, const void *value)
{
threadTlsSet(key, (void*)value);
return 0;
}
void* __syscall_tls_get(uint32_t key)
{
return threadTlsGet(key);
}
int __syscall_tls_delete(uint32_t key)
{
threadTlsFree(key);
return 0;
}
int sched_yield(void)
{
svcSleepThread(-1);
return 0;
}
int sched_getcpu(void)
{
return svcGetCurrentProcessorNumber();
}
static u64 __boottime;
static u64 __bootticks;
// setup boot time variables
void __libnx_init_time(void)
{
TimeCalendarAdditionalInfo info;
char envstr[64];
char *strptr;
bool is_west=0;
s32 tmp_offset, hour, minute, second;
Result rc = timeGetCurrentTime(__nx_time_type, &__boottime);
if (R_FAILED(rc) && __nx_time_type != TimeType_Default) rc = timeGetCurrentTime(TimeType_Default, &__boottime);
if (R_FAILED(rc)) {
__boottime = UINT64_MAX;
} else {
__bootticks = armGetSystemTick();
}
if (R_SUCCEEDED(rc)) rc = timeToCalendarTimeWithMyRule(__boottime, NULL, &info);
if (R_SUCCEEDED(rc)) {
info.timezoneName[7] = 0;
tmp_offset = info.offset;
if (tmp_offset < 0) {
is_west = 1;
tmp_offset = -tmp_offset;
}
second = tmp_offset % 60;
tmp_offset /= 60;
minute = tmp_offset % 60;
tmp_offset /= 60;
hour = tmp_offset % 24;
memset(envstr, 0, sizeof(envstr));
//Avoid using *printf.
strncpy(envstr, /*info.timezoneName*/"NX", sizeof(envstr)-1); // Some tznames have numeric characters and '-'/'+', so the actual tzname can't be used.
strptr = &envstr[strlen(envstr)];
*strptr++ = is_west ? '+' : '-';
*strptr++ = '0' + (hour / 10);
*strptr++ = '0' + (hour % 10);
*strptr++ = ':';
*strptr++ = '0' + (minute / 10);
*strptr++ = '0' + (minute % 10);
*strptr++ = ':';
*strptr++ = '0' + (second / 10);
*strptr++ = '0' + (second % 10);
setenv("TZ", envstr, 0);
}
}
static const u64 nsec_clockres = 1000000000ULL / 19200000ULL;
int __syscall_clock_getres(clockid_t clock_id, struct timespec *tp)
{
if(clock_id != CLOCK_MONOTONIC && clock_id != CLOCK_REALTIME) {
errno = EINVAL;
return -1;
}
if(tp) {
tp->tv_sec = 0;
tp->tv_nsec = nsec_clockres;
return 0;
} else {
errno = EFAULT;
return -1;
}
}
int __syscall_clock_gettime(clockid_t clock_id, struct timespec *tp)
{
if(clock_id != CLOCK_MONOTONIC && clock_id != CLOCK_REALTIME) {
errno = EINVAL;
return -1;
}
if(tp) {
if(__boottime == UINT64_MAX) {
errno = EIO;
return -1;
}
u64 now=armGetSystemTick() - __bootticks;
u64 __bootsecs = now / 19200000ULL;
tp->tv_sec = __bootsecs + __boottime;
u64 nsecs = (now - __bootsecs * 19200000ULL) * 10000ULL / 192ULL;
tp->tv_nsec = nsecs - nsecs % nsec_clockres;
return 0;
} else {
errno = EFAULT;
return -1;
}
}
int __syscall_gettod_r(struct _reent *ptr, struct timeval *tp, struct timezone *tz)
{
if (tp != NULL) {
if(__boottime == UINT64_MAX) {
ptr->_errno = EIO;
return -1;
}
u64 now=armGetSystemTick() - __bootticks;
u64 __bootsecs = now / 19200000ULL;
tp->tv_sec = __bootsecs + __boottime;
tp->tv_usec = (now - __bootsecs * 19200000ULL) * 10ULL / 192ULL;
}
if (tz != NULL) {
tz->tz_minuteswest = 0;
tz->tz_dsttime = 0;
}
return 0;
}
int __syscall_nanosleep(const struct timespec *req, struct timespec *rem)
{
if (!req) {
errno = EINVAL;
return -1;
}
svcSleepThread(timespec2nsec(req));
if (rem) {
rem->tv_nsec = 0;
rem->tv_sec = 0;
}
return 0;
}
void newlibSetup(void)
{
// Initialize thread vars for the main thread
ThreadVars* tv = getThreadVars();
tv->magic = THREADVARS_MAGIC;
tv->thread_ptr = NULL;
tv->reent = _impure_ptr;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
tv->tls_tp = __tls_start-2*sizeof(void*); // subtract size of Thread Control Block (TCB)
#pragma GCC diagnostic pop
tv->handle = envGetMainThreadHandle();
u32 tls_size = __tdata_lma_end - __tdata_lma;
if (tls_size)
memcpy(__tls_start, __tdata_lma, tls_size);
}