libnx/nx/source/services/nv.c
2018-01-22 20:11:55 +01:00

376 lines
8.7 KiB
C

#include <string.h>
#include "types.h"
#include "result.h"
#include "ipc.h"
#include "services/applet.h"
#include "gfx/ioctl.h"
#include "services/nv.h"
#include "services/sm.h"
#include "kernel/tmem.h"
static Service g_nvSrv;
static size_t g_nvIpcBufferSize = 0;
static u32 g_nvServiceType = -1;
static TransferMemory g_nvTransfermem;
static Result _nvInitialize(Handle proc, Handle sharedmem, u32 transfermem_size);
static Result _nvSetClientPID(u64 AppletResourceUserId);
Result nvInitialize(nvServiceType servicetype, size_t transfermem_size)
{
if(g_nvServiceType!=-1)
return MAKERESULT(Module_Libnx, LibnxError_AlreadyInitialized);
Result rc = 0;
u64 AppletResourceUserId = 0;
if (servicetype==NVSERVTYPE_Default || servicetype==NVSERVTYPE_Application) {
rc = smGetService(&g_nvSrv, "nvdrv");
g_nvServiceType = 0;
}
if ((servicetype==NVSERVTYPE_Default && R_FAILED(rc)) || servicetype==NVSERVTYPE_Applet) {
rc = smGetService(&g_nvSrv, "nvdrv:a");
g_nvServiceType = 1;
}
if ((servicetype==NVSERVTYPE_Default && R_FAILED(rc)) || servicetype==NVSERVTYPE_Sysmodule)
{
rc = smGetService(&g_nvSrv, "nvdrv:s");
g_nvServiceType = 2;
}
if ((servicetype==NVSERVTYPE_Default && R_FAILED(rc)) || servicetype==NVSERVTYPE_T)
{
rc = smGetService(&g_nvSrv, "nvdrv:t");
g_nvServiceType = 3;
}
if (R_SUCCEEDED(rc)) {
g_nvIpcBufferSize = 0;
rc = ipcQueryPointerBufferSize(g_nvSrv.handle, &g_nvIpcBufferSize);
if (R_SUCCEEDED(rc)) rc = tmemCreate(&g_nvTransfermem, transfermem_size, PERM_NONE);
if (R_SUCCEEDED(rc)) rc = _nvInitialize(CUR_PROCESS_HANDLE, g_nvTransfermem.handle, transfermem_size);
//Officially ipc control DuplicateSessionEx would be used here.
if (R_SUCCEEDED(rc)) rc = appletGetAppletResourceUserId(&AppletResourceUserId);//TODO: How do sysmodules handle this?
if (R_SUCCEEDED(rc)) rc = _nvSetClientPID(AppletResourceUserId);
}
if (R_FAILED(rc)) {
nvExit();
}
return rc;
}
void nvExit(void)
{
if(g_nvServiceType == -1)
return;
g_nvServiceType = -1;
serviceClose(&g_nvSrv);
tmemClose(&g_nvTransfermem);
}
static Result _nvInitialize(Handle proc, Handle sharedmem, u32 transfermem_size) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
u32 transfermem_size;
} *raw;
ipcSendHandleCopy(&c, proc);
ipcSendHandleCopy(&c, sharedmem);
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 3;
raw->transfermem_size = transfermem_size;
Result rc = serviceIpcDispatch(&g_nvSrv);
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
} *resp = r.Raw;
rc = resp->result;
}
return rc;
}
static Result _nvSetClientPID(u64 AppletResourceUserId) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
u64 AppletResourceUserId;
} *raw;
ipcSendPid(&c);
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 8;
raw->AppletResourceUserId = AppletResourceUserId;
Result rc = serviceIpcDispatch(&g_nvSrv);
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
} *resp = r.Raw;
rc = resp->result;
}
return rc;
}
Result nvOpen(u32 *fd, const char *devicepath) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
} *raw;
ipcAddSendBuffer(&c, devicepath, strlen(devicepath), 0);
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 0;
Result rc = serviceIpcDispatch(&g_nvSrv);
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
u32 fd;
u32 error;
} *resp = r.Raw;
rc = resp->result;
if (R_SUCCEEDED(rc))
rc = nvConvertError(resp->error);
if (R_SUCCEEDED(rc))
*fd = resp->fd;
}
return rc;
}
Result nvIoctl(u32 fd, u32 request, void* argp) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
u32 fd;
u32 request;
} *raw;
size_t bufsize = _IOC_SIZE(request);
u32 dir = _IOC_DIR(request);
void* buf_send = NULL, *buf_recv = NULL;
size_t buf_send_size = 0, buf_recv_size = 0;
if(dir & _IOC_WRITE) {
buf_send = argp;
buf_send_size = bufsize;
}
if(dir & _IOC_READ) {
buf_recv = argp;
buf_recv_size = bufsize;
}
void* bufs_send[2] = {buf_send, buf_send};
void* bufs_recv[2] = {buf_recv, buf_recv};
size_t bufs_send_size[2] = {buf_send_size, buf_send_size};
size_t bufs_recv_size[2] = {buf_recv_size, buf_recv_size};
if(g_nvIpcBufferSize!=0 && bufsize <= g_nvIpcBufferSize) {
bufs_send[0] = NULL;
bufs_send_size[0] = 0;
bufs_recv[0] = NULL;
bufs_recv_size[0] = 0;
}
else {
bufs_send[1] = NULL;
bufs_send_size[1] = 0;
bufs_recv[1] = NULL;
bufs_recv_size[1] = 0;
}
ipcAddSendBuffer(&c, bufs_send[0], bufs_send_size[0], 0);
ipcAddRecvBuffer(&c, bufs_recv[0], bufs_recv_size[0], 0);
ipcAddSendStatic(&c, bufs_send[1], bufs_send_size[1], 0);
ipcAddRecvStatic(&c, bufs_recv[1], bufs_recv_size[1], 0);
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 1;
raw->fd = fd;
raw->request = request;
Result rc = serviceIpcDispatch(&g_nvSrv);
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
u32 error;
} *resp = r.Raw;
rc = resp->result;
if (R_SUCCEEDED(rc))
rc = nvConvertError(resp->error);
}
return rc;
}
Result nvClose(u32 fd) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
u32 fd;
} *raw;
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 2;
raw->fd = fd;
Result rc = serviceIpcDispatch(&g_nvSrv);
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
u32 error;
} *resp = r.Raw;
rc = resp->result;
if (R_SUCCEEDED(rc))
rc = nvConvertError(resp->error);
}
return rc;
}
Result nvQueryEvent(u32 fd, u32 event_id, Handle *handle_out) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
u32 fd;
u32 event_id;
} *raw;
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 4;
raw->fd = fd;
raw->event_id = event_id;
Result rc = serviceIpcDispatch(&g_nvSrv);
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
u32 error;
} *resp = r.Raw;
rc = resp->result;
if (R_SUCCEEDED(rc))
rc = nvConvertError(resp->error);
if (R_SUCCEEDED(rc))
*handle_out = r.Handles[0];
}
return rc;
}
Result nvConvertError(int rc)
{
if (rc == 0) // Fast path.
return 0;
int desc;
switch (rc) {
case 1: desc = LibnxNvidiaError_NotImplemented; break;
case 2: desc = LibnxNvidiaError_NotSupported; break;
case 3: desc = LibnxNvidiaError_NotInitialized; break;
case 4: desc = LibnxNvidiaError_BadParameter; break;
case 5: desc = LibnxNvidiaError_Timeout; break;
case 6: desc = LibnxNvidiaError_InsufficientMemory; break;
case 7: desc = LibnxNvidiaError_ReadOnlyAttribute; break;
case 8: desc = LibnxNvidiaError_InvalidState; break;
case 9: desc = LibnxNvidiaError_InvalidAddress; break;
case 10: desc = LibnxNvidiaError_InvalidSize; break;
case 11: desc = LibnxNvidiaError_BadValue; break;
case 13: desc = LibnxNvidiaError_AlreadyAllocated; break;
case 14: desc = LibnxNvidiaError_Busy; break;
case 15: desc = LibnxNvidiaError_ResourceError; break;
case 16: desc = LibnxNvidiaError_CountMismatch; break;
case 0x1000: desc = LibnxNvidiaError_SharedMemoryTooSmall; break;
case 0x30003: desc = LibnxNvidiaError_FileOperationFailed; break;
case 0x3000F: desc = LibnxNvidiaError_IoctlFailed; break;
default: desc = LibnxNvidiaError_Unknown; break;
}
return MAKERESULT(Module_LibnxNvidia, desc);
}