libnx/nx/source/services/nv.c
fincs 6ad0042147
Introduce new IPC interface wrapper code, see details:
- Service object moved away from sm.h and into its own file (sf/service.h)
- Service object completely redesigned, but a (mostly)
  backwards compatible API was kept
- New low level HIPC request/response code
- New CMIF client-oriented code
- New service IPC dispatch functions
- Pointer buffer size automatically retrieved for all sessions
- Removed previous manual pointer buffer size query code
- SM rewritten with new IPC code
- All other services are still pending IPC rewrite
2019-09-19 03:50:28 +02:00

439 lines
10 KiB
C

#include <string.h>
#include "types.h"
#include "result.h"
#include "arm/atomics.h"
#include "kernel/ipc.h"
#include "kernel/tmem.h"
#include "services/applet.h"
#include "nvidia/ioctl.h"
#include "services/nv.h"
#include "services/sm.h"
__attribute__((weak)) u32 __nx_nv_transfermem_size = 0x800000;
static Service g_nvSrv;
static Service g_nvSrvClone;
static u64 g_refCnt;
static size_t g_nvIpcBufferSize = 0;
static TransferMemory g_nvTransfermem;
static Result _nvInitialize(Handle proc, Handle sharedmem, u32 transfermem_size);
static Result _nvSetClientPID(u64 AppletResourceUserId);
Result nvInitialize(void)
{
atomicIncrement64(&g_refCnt);
if (serviceIsActive(&g_nvSrv))
return 0;
Result rc = 0;
u64 AppletResourceUserId = 0;
switch (appletGetAppletType()) {
case AppletType_None:
rc = smGetService(&g_nvSrv, "nvdrv:s");
break;
case AppletType_Default:
case AppletType_Application:
case AppletType_SystemApplication:
default:
rc = smGetService(&g_nvSrv, "nvdrv");
break;
case AppletType_SystemApplet:
case AppletType_LibraryApplet:
case AppletType_OverlayApplet:
rc = smGetService(&g_nvSrv, "nvdrv:a");
break;
}
if (R_SUCCEEDED(rc)) {
g_nvIpcBufferSize = g_nvSrv.pointer_buffer_size;
if (R_SUCCEEDED(rc))
rc = tmemCreate(&g_nvTransfermem, __nx_nv_transfermem_size, Perm_None);
if (R_SUCCEEDED(rc))
rc = _nvInitialize(CUR_PROCESS_HANDLE, g_nvTransfermem.handle, __nx_nv_transfermem_size);
// Clone the session handle - the cloned session is used to execute certain commands in parallel
Handle nv_clone = INVALID_HANDLE;
if (R_SUCCEEDED(rc))
rc = ipcCloneSession(g_nvSrv.session, 1, &nv_clone);
if (R_SUCCEEDED(rc))
serviceCreate(&g_nvSrvClone, nv_clone);
if (R_SUCCEEDED(rc))
{
// Send aruid if available (non-fatal condition if get-aruid fails)
Result aruid_rc = appletGetAppletResourceUserId(&AppletResourceUserId);
if (R_SUCCEEDED(aruid_rc))
rc = _nvSetClientPID(AppletResourceUserId);
}
}
if (R_FAILED(rc)) {
nvExit();
}
return rc;
}
void nvExit(void)
{
if (atomicDecrement64(&g_refCnt) == 0) {
serviceClose(&g_nvSrvClone);
serviceClose(&g_nvSrv);
tmemClose(&g_nvTransfermem);
}
}
static Result _nvInitialize(Handle proc, Handle sharedmem, u32 transfermem_size) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
u32 transfermem_size;
} *raw;
ipcSendHandleCopy(&c, proc);
ipcSendHandleCopy(&c, sharedmem);
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 3;
raw->transfermem_size = transfermem_size;
Result rc = serviceIpcDispatch(&g_nvSrv);
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
} *resp = r.Raw;
rc = resp->result;
}
return rc;
}
static Result _nvSetClientPID(u64 AppletResourceUserId) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
u64 AppletResourceUserId;
} *raw;
ipcSendPid(&c);
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 8;
raw->AppletResourceUserId = AppletResourceUserId;
Result rc = serviceIpcDispatch(&g_nvSrv);
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
} *resp = r.Raw;
rc = resp->result;
}
return rc;
}
Result nvOpen(u32 *fd, const char *devicepath) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
} *raw;
ipcAddSendBuffer(&c, devicepath, strlen(devicepath), 0);
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 0;
Result rc = serviceIpcDispatch(&g_nvSrv);
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
u32 fd;
u32 error;
} *resp = r.Raw;
rc = resp->result;
if (R_SUCCEEDED(rc))
rc = nvConvertError(resp->error);
if (R_SUCCEEDED(rc))
*fd = resp->fd;
}
return rc;
}
// Get the appropriate session for the specified request (same logic as official sw)
static inline Service* _nvGetSessionForRequest(u32 request)
{
if (
(request & 0xC000FFFF) == 0xC0004808 || // NVGPU_IOCTL_CHANNEL_SUBMIT_GPFIFO
request == 0xC018481B || // NVGPU_IOCTL_CHANNEL_KICKOFF_PB
request == 0xC004001C || // NVHOST_IOCTL_CTRL_EVENT_SIGNAL
request == 0xC010001E // NVHOST_IOCTL_CTRL_EVENT_WAIT_ASYNC
)
return &g_nvSrvClone;
return &g_nvSrv;
}
Result nvIoctl(u32 fd, u32 request, void* argp) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
u32 fd;
u32 request;
} *raw;
size_t bufsize = _NV_IOC_SIZE(request);
u32 dir = _NV_IOC_DIR(request);
void* buf_send = NULL, *buf_recv = NULL;
size_t buf_send_size = 0, buf_recv_size = 0;
if(dir & _NV_IOC_WRITE) {
buf_send = argp;
buf_send_size = bufsize;
}
if(dir & _NV_IOC_READ) {
buf_recv = argp;
buf_recv_size = bufsize;
}
ipcAddSendSmart(&c, g_nvIpcBufferSize, buf_send, buf_send_size, 0);
ipcAddRecvSmart(&c, g_nvIpcBufferSize, buf_recv, buf_recv_size, 0);
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 1;
raw->fd = fd;
raw->request = request;
Result rc = serviceIpcDispatch(_nvGetSessionForRequest(request));
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
u32 error;
} *resp = r.Raw;
rc = resp->result;
if (R_SUCCEEDED(rc))
rc = nvConvertError(resp->error);
}
return rc;
}
Result nvIoctl2(u32 fd, u32 request, void* argp, const void* inbuf, size_t inbuf_size) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
u32 fd;
u32 request;
} *raw;
size_t bufsize = _NV_IOC_SIZE(request);
u32 dir = _NV_IOC_DIR(request);
void* buf_send = NULL, *buf_recv = NULL;
size_t buf_send_size = 0, buf_recv_size = 0;
if(dir & _NV_IOC_WRITE) {
buf_send = argp;
buf_send_size = bufsize;
}
if(dir & _NV_IOC_READ) {
buf_recv = argp;
buf_recv_size = bufsize;
}
ipcAddSendSmart(&c, g_nvIpcBufferSize, buf_send, buf_send_size, 0);
ipcAddSendSmart(&c, g_nvIpcBufferSize, inbuf, inbuf_size, 1);
ipcAddRecvSmart(&c, g_nvIpcBufferSize, buf_recv, buf_recv_size, 0);
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 11;
raw->fd = fd;
raw->request = request;
Result rc = serviceIpcDispatch(_nvGetSessionForRequest(request));
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
u32 error;
} *resp = r.Raw;
rc = resp->result;
if (R_SUCCEEDED(rc))
rc = nvConvertError(resp->error);
}
return rc;
}
Result nvClose(u32 fd) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
u32 fd;
} *raw;
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 2;
raw->fd = fd;
Result rc = serviceIpcDispatch(&g_nvSrv);
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
u32 error;
} *resp = r.Raw;
rc = resp->result;
if (R_SUCCEEDED(rc))
rc = nvConvertError(resp->error);
}
return rc;
}
Result nvQueryEvent(u32 fd, u32 event_id, Event *event_out) {
IpcCommand c;
ipcInitialize(&c);
struct {
u64 magic;
u64 cmd_id;
u32 fd;
u32 event_id;
} *raw;
raw = ipcPrepareHeader(&c, sizeof(*raw));
raw->magic = SFCI_MAGIC;
raw->cmd_id = 4;
raw->fd = fd;
raw->event_id = event_id;
Result rc = serviceIpcDispatch(&g_nvSrv);
if (R_SUCCEEDED(rc)) {
IpcParsedCommand r;
ipcParse(&r);
struct {
u64 magic;
u64 result;
u32 error;
} *resp = r.Raw;
rc = resp->result;
if (R_SUCCEEDED(rc))
rc = nvConvertError(resp->error);
if (R_SUCCEEDED(rc))
eventLoadRemote(event_out, r.Handles[0], true);
}
return rc;
}
Result nvConvertError(int rc)
{
if (rc == 0) // Fast path.
return 0;
int desc;
switch (rc) {
case 1: desc = LibnxNvidiaError_NotImplemented; break;
case 2: desc = LibnxNvidiaError_NotSupported; break;
case 3: desc = LibnxNvidiaError_NotInitialized; break;
case 4: desc = LibnxNvidiaError_BadParameter; break;
case 5: desc = LibnxNvidiaError_Timeout; break;
case 6: desc = LibnxNvidiaError_InsufficientMemory; break;
case 7: desc = LibnxNvidiaError_ReadOnlyAttribute; break;
case 8: desc = LibnxNvidiaError_InvalidState; break;
case 9: desc = LibnxNvidiaError_InvalidAddress; break;
case 10: desc = LibnxNvidiaError_InvalidSize; break;
case 11: desc = LibnxNvidiaError_BadValue; break;
case 13: desc = LibnxNvidiaError_AlreadyAllocated; break;
case 14: desc = LibnxNvidiaError_Busy; break;
case 15: desc = LibnxNvidiaError_ResourceError; break;
case 16: desc = LibnxNvidiaError_CountMismatch; break;
case 0x1000: desc = LibnxNvidiaError_SharedMemoryTooSmall; break;
case 0x30003: desc = LibnxNvidiaError_FileOperationFailed; break;
case 0x3000F: desc = LibnxNvidiaError_IoctlFailed; break;
default: desc = LibnxNvidiaError_Unknown; break;
}
return MAKERESULT(Module_LibnxNvidia, desc);
}