libnx/nx/source/runtime/c11-threads.c

364 lines
7.3 KiB
C

#include <stdlib.h>
#include <time.h>
#include <threads.h>
#include "kernel/svc.h"
#include "../internal.h"
#define THRD_MAIN_HANDLE ((thrd_t)~(uintptr_t)0)
static bool timespec_subtract(struct timespec x, struct timespec y, struct timespec *__restrict result)
{
// Perform the carry for the later subtraction by updating y
if (x.tv_nsec < y.tv_nsec) {
int seconds = (y.tv_nsec - x.tv_nsec) / 1000000000 + 1;
y.tv_nsec -= 1000000000 * seconds;
y.tv_sec += seconds;
}
if (x.tv_nsec - y.tv_nsec > 1000000000) {
int seconds = (x.tv_nsec - y.tv_nsec) / 1000000000;
y.tv_nsec += 1000000000 * seconds;
y.tv_sec -= seconds;
}
// Compute the time remaining to wait
result->tv_sec = x.tv_sec - y.tv_sec;
result->tv_nsec = x.tv_nsec - y.tv_nsec;
// Return true if result is negative
return x.tv_sec < y.tv_sec;
}
static inline u64 impl_timespec2nsec(const struct timespec *__restrict ts)
{
return (u64)ts->tv_sec * 1000000000 + ts->tv_nsec;
}
static u64 impl_abstimespec2nsec(const struct timespec *__restrict ts)
{
struct timespec now, diff;
clock_gettime(CLOCK_REALTIME, &now);
if (timespec_subtract(*ts, now, &diff))
return 0;
return impl_timespec2nsec(&diff);
}
void call_once(once_flag *flag, void (*func)(void))
{
mtx_lock(&flag->mutex);
if (flag->status == 0) {
flag->status = 1;
mtx_unlock(&flag->mutex);
func();
mtx_lock(&flag->mutex);
flag->status = 2;
cnd_broadcast(&flag->cond);
} else {
while (flag->status == 1)
cnd_wait(&flag->cond, &flag->mutex);
}
mtx_unlock(&flag->mutex);
}
int cnd_broadcast(cnd_t *cond)
{
if (!cond)
return thrd_error;
Result rc = condvarWakeAll(cond);
return R_SUCCEEDED(rc) ? thrd_success : thrd_error;
}
void cnd_destroy(cnd_t *cond)
{
// Nothing
}
int cnd_init(cnd_t *cond)
{
if (!cond)
return thrd_error;
condvarInit(cond);
return thrd_success;
}
int cnd_signal(cnd_t *cond)
{
if (!cond)
return thrd_error;
Result rc = condvarWakeOne(cond);
return R_SUCCEEDED(rc) ? thrd_success : thrd_error;
}
static int __cnd_timedwait(cnd_t *__restrict cond, mtx_t *__restrict mtx, u64 timeout)
{
if (!cond || !mtx)
return thrd_error;
uint32_t thread_tag_backup = 0;
if (mtx->type & mtx_recursive) {
if (mtx->rmutex.counter != 1)
return thrd_error;
thread_tag_backup = mtx->rmutex.thread_tag;
mtx->rmutex.thread_tag = 0;
mtx->rmutex.counter = 0;
}
Result rc = condvarWaitTimeout(cond, &mtx->mutex, timeout);
if (mtx->type & mtx_recursive) {
mtx->rmutex.thread_tag = thread_tag_backup;
mtx->rmutex.counter = 1;
}
if (R_VALUE(rc) == KERNELRESULT(TimedOut))
return thrd_timedout;
return R_SUCCEEDED(rc) ? thrd_success : thrd_error;
}
int cnd_timedwait(cnd_t *__restrict cond, mtx_t *__restrict mtx, const struct timespec *__restrict abs_time)
{
if (!abs_time)
return thrd_error;
return __cnd_timedwait(cond, mtx, impl_abstimespec2nsec(abs_time));
}
int cnd_wait(cnd_t *cond, mtx_t *mtx)
{
return __cnd_timedwait(cond, mtx, U64_MAX);
}
void mtx_destroy(mtx_t *mtx)
{
// Nothing needs to be done here
}
int mtx_init(mtx_t *mtx, int type)
{
if (!mtx || (type & mtx_timed) || !(type & mtx_plain))
return thrd_error;
mtx->type = type;
if (mtx->type & mtx_recursive)
rmutexInit(&mtx->rmutex);
else
mutexInit(&mtx->mutex);
return thrd_success;
}
int mtx_lock(mtx_t *mtx)
{
if (!mtx)
return thrd_error;
if (mtx->type & mtx_recursive)
rmutexLock(&mtx->rmutex);
else
mutexLock(&mtx->mutex);
return thrd_success;
}
/*
int mtx_timedlock(mtx_t *__restrict mtx, const struct timespec *__restrict ts)
{
}
*/
int mtx_trylock(mtx_t *mtx)
{
if (!mtx)
return thrd_error;
bool res = false;
if (mtx->type & mtx_recursive)
res = rmutexTryLock(&mtx->rmutex);
else
res = mutexTryLock(&mtx->mutex);
return res ? thrd_success : thrd_error;
}
int mtx_unlock(mtx_t *mtx)
{
if (!mtx)
return thrd_error;
if (mtx->type & mtx_recursive)
rmutexUnlock(&mtx->rmutex);
else
mutexUnlock(&mtx->mutex);
return thrd_success;
}
typedef struct
{
thrd_start_t func;
void* arg;
bool thread_started;
mtx_t mutex;
cnd_t cond;
} __thrd_start_info;
static void __thrd_entry(void* __arg)
{
__thrd_start_info* info = (__thrd_start_info*)__arg;
thrd_start_t func = info->func;
void* arg = info->arg;
mtx_lock(&info->mutex);
info->thread_started = true;
cnd_signal(&info->cond);
mtx_unlock(&info->mutex);
int rc = func(arg);
thrd_exit(rc);
}
int thrd_create(thrd_t *thr, thrd_start_t func, void *arg)
{
if (!thr || !func)
return thrd_error;
Result rc;
*thr = NULL;
u64 core_mask = 0;
rc = svcGetInfo(&core_mask, 0, CUR_PROCESS_HANDLE, 0);
if (R_FAILED(rc))
return thrd_error;
__thrd_t* t = (__thrd_t*)malloc(sizeof(__thrd_t));
if (!t)
return thrd_nomem;
__thrd_start_info info;
info.func = func;
info.arg = arg;
info.thread_started = false;
mtx_init(&info.mutex, mtx_plain);
cnd_init(&info.cond);
rc = threadCreate(&t->thr, __thrd_entry, &info, 128*1024, 0x3B, -2);
if (R_FAILED(rc))
goto _error1;
rc = svcSetThreadCoreMask(t->thr.handle, -1, core_mask);
if (R_FAILED(rc))
goto _error2;
rc = threadStart(&t->thr);
if (R_FAILED(rc))
goto _error2;
mtx_lock(&info.mutex);
while (!info.thread_started)
cnd_wait(&info.cond, &info.mutex);
mtx_unlock(&info.mutex);
*thr = t;
return thrd_success;
_error2:
threadClose(&t->thr);
_error1:
free(t);
return thrd_error;
}
thrd_t thrd_current(void)
{
Thread* t = getThreadVars()->thread_ptr;
return t ? (thrd_t)t : THRD_MAIN_HANDLE;
}
/*
int thrd_detach(thrd_t thr)
{
}
*/
int thrd_equal(thrd_t thr1, thrd_t thr2)
{
return thr1 == thr2;
}
void thrd_exit(int res)
{
thrd_t t = thrd_current();
t->rc = res;
threadExit();
}
int thrd_join(thrd_t thr, int *res)
{
Result rc;
if (!thr || thr == THRD_MAIN_HANDLE)
return thrd_error;
rc = threadWaitForExit(&thr->thr);
if (R_FAILED(rc))
return thrd_error;
if (res)
*res = thr->rc;
rc = threadClose(&thr->thr);
free(thr);
return R_SUCCEEDED(rc) ? thrd_success : thrd_error;
}
int thrd_sleep(const struct timespec *duration, struct timespec *remaining)
{
if (!duration)
return -1;
svcSleepThread(impl_timespec2nsec(duration));
if (remaining) {
remaining->tv_nsec = 0;
remaining->tv_sec = 0;
}
return 0;
}
void thrd_yield(void)
{
svcSleepThread(-1);
}
int tss_create(tss_t *key, tss_dtor_t dtor)
{
if (!key)
return thrd_error;
s32 slot_id = threadTlsAlloc(dtor);
if (slot_id >= 0) {
*key = slot_id;
return thrd_success;
}
return thrd_error;
}
void tss_delete(tss_t key)
{
threadTlsFree(key);
}
void * tss_get(tss_t key)
{
return threadTlsGet(key);
}
int tss_set(tss_t key, void *val)
{
threadTlsSet(key, val);
return thrd_success;
}