#include #include Result nvioctlNvhostCtrl_EventSignal(u32 fd, u32 event_id) { struct { u32 event_id; //in ranges from 0x01 to 0x3F } data; memset(&data, 0, sizeof(data)); data.event_id = event_id; return nvIoctl(fd, _IOWR(0x00, 0x1C, data), &data); } Result nvioctlNvhostCtrl_EventWait(u32 fd, u32 unk0, u32 unk1, s32 timeout, u32 event_id, u32 *out) { Result rc = 0; struct { u32 unk0;//in u32 unk1;//in s32 timeout;//in u32 event;// in=event_id; out=result } data; memset(&data, 0, sizeof(data)); data.unk0 = unk0; data.unk1 = unk1; data.timeout = timeout; data.event = event_id; rc = nvIoctl(fd, _IOWR(0x00, 0x1D, data), &data); if (R_FAILED(rc)) return rc; if(out) *out = data.event; return rc; } Result nvioctlNvhostCtrl_EventRegister(u32 fd, u32 event_id) { struct { u32 event_id; //in ranges from 0x01 to 0x3F } data; memset(&data, 0, sizeof(data)); data.event_id = event_id; return nvIoctl(fd, _IOWR(0x40, 0x1F, data), &data); } Result nvioctlNvhostCtrlGpu_ZCullGetCtxSize(u32 fd, u32 *out) { Result rc = 0; struct { u32 out; } data; memset(&data, 0, sizeof(data)); rc = nvIoctl(fd, _IOR(0x47, 0x01, data), &data); if (R_FAILED(rc)) return rc; *out = data.out; return rc; } Result nvioctlNvhostCtrlGpu_ZCullGetInfo(u32 fd, u32 out[40>>2]) { Result rc = 0; struct { u32 out[40>>2]; } data; memset(&data, 0, sizeof(data)); rc = nvIoctl(fd, _IOR(0x47, 0x02, data), &data); if (R_FAILED(rc)) return rc; memcpy(out, data.out, sizeof(data.out)); return rc; } Result nvioctlNvhostCtrlGpu_GetCharacteristics(u32 fd, gpu_characteristics *out) { Result rc = 0; struct { u64 gpu_characteristics_buf_size; // in/out (must not be NULL, but gets overwritten with 0xA0=max_size) u64 gpu_characteristics_buf_addr; // in (ignored, but must not be NULL) gpu_characteristics gc; // out } data; memset(&data, 0, sizeof(data)); data.gpu_characteristics_buf_size = sizeof(gpu_characteristics); data.gpu_characteristics_buf_addr = 1; rc = nvIoctl(fd, _IOWR(0x47, 0x05, data), &data); if (R_FAILED(rc)) return rc; memcpy(out, &data.gc, sizeof(gpu_characteristics)); return rc; } Result nvioctlNvhostCtrlGpu_GetTpcMasks(u32 fd, u32 inval, u32 out[24>>2]) { Result rc = 0; struct { u32 unk[24>>2]; } data; memset(&data, 0, sizeof(data)); data.unk[0] = inval; data.unk[2] = 1;//addr? rc = nvIoctl(fd, _IOWR(0x47, 0x06, data), &data); if (R_FAILED(rc)) return rc; memcpy(out, &data.unk, sizeof(data.unk)); return rc; } Result nvioctlNvhostCtrlGpu_GetL2State(u32 fd, nvioctl_l2_state *out) { Result rc = 0; struct { nvioctl_l2_state out; } data; memset(&data, 0, sizeof(data)); rc = nvIoctl(fd, _IOR(0x47, 0x14, data), &data); if (R_FAILED(rc)) return rc; memcpy(out, &data.out, sizeof(data.out)); return rc; } Result nvioctlNvhostAsGpu_BindChannel(u32 fd, u32 channel_fd) { struct { u32 fd;//in } data; memset(&data, 0, sizeof(data)); data.fd = channel_fd; return nvIoctl(fd, _IOW(0x41, 0x01, data), &data); } Result nvioctlNvhostAsGpu_AllocSpace(u32 fd, u32 pages, u32 page_size, u32 flags, u64 align, u64 *offset) { Result rc=0; struct { u32 pages;//in u32 page_size;//in u32 flags;//in u32 pad; union { u64 offset;//out u64 align;//in }; } data; memset(&data, 0, sizeof(data)); data.pages = pages; data.page_size = page_size; data.flags = flags; data.align = align; rc = nvIoctl(fd, _IOWR(0x41, 0x02, data), &data); if (R_FAILED(rc)) return rc; *offset = data.offset; return rc; } Result nvioctlNvhostAsGpu_MapBufferEx(u32 fd, u32 flags, u32 kind, u32 nvmap_handle, u32 page_size, u64 buffer_offset, u64 mapping_size, u64 input_offset, u64 *offset) { Result rc=0; struct { u32 flags; // in bit0: fixed_offset, bit2: cacheable u32 kind; // in -1 is default u32 nvmap_handle; // in u32 page_size; // inout 0 means don't care u64 buffer_offset; // in u64 mapping_size; // in u64 offset; // inout } data; memset(&data, 0, sizeof(data)); data.flags = flags; data.kind = kind; data.nvmap_handle = nvmap_handle; data.page_size = page_size; data.buffer_offset = buffer_offset; data.mapping_size = mapping_size; data.offset = input_offset; rc = nvIoctl(fd, _IOWR(0x41, 0x06, data), &data); if (R_FAILED(rc)) return rc; if (offset) *offset = data.offset; return rc; } Result nvioctlNvhostAsGpu_GetVARegions(u32 fd, nvioctl_va_region regions[2]) { Result rc=0; struct { u64 not_used; // (contained output user ptr on linux, ignored) u32 bufsize; //inout forced to 2*sizeof(struct va_region) u32 pad; nvioctl_va_region regions[2];//out } data; memset(&data, 0, sizeof(data)); data.bufsize = sizeof(data.regions); rc = nvIoctl(fd, _IOWR(0x41, 0x08, data), &data); if (R_FAILED(rc)) return rc; memcpy(regions, data.regions, sizeof(data.regions)); return rc; } Result nvioctlNvhostAsGpu_InitializeEx(u32 fd, u32 big_page_size) { struct { u32 big_page_size; // depends on GPU's available_big_page_sizes; 0=default s32 as_fd; // ignored; passes 0 u32 flags; // ignored; passes 0 u32 reserved; // ignored; passes 0 u64 unk0; u64 unk1; u64 unk2; } data; memset(&data, 0, sizeof(data)); data.big_page_size = big_page_size; return nvIoctl(fd, _IOW(0x41, 0x09, data), &data); } Result nvioctlNvmap_Create(u32 fd, u32 size, u32 *nvmap_handle) { Result rc=0; struct { u32 size;//in u32 handle;//out } data; memset(&data, 0, sizeof(data)); data.size = size; rc = nvIoctl(fd, _IOWR(0x01, 0x01, data), &data); if (R_FAILED(rc)) return rc; *nvmap_handle = data.handle; return rc; } Result nvioctlNvmap_FromID(u32 fd, u32 id, u32 *nvmap_handle) { Result rc=0; struct { u32 id;//in u32 handle;//out } data; memset(&data, 0, sizeof(data)); data.id = id; rc = nvIoctl(fd, _IOWR(0x01, 0x03, data), &data); if (R_FAILED(rc)) return rc; *nvmap_handle = data.handle; return rc; } Result nvioctlNvmap_Alloc(u32 fd, u32 nvmap_handle, u32 heapmask, u32 flags, u32 align, u8 kind, void* addr) { struct { u32 handle;//in u32 heapmask;//in u32 flags; //in (0=read-only, 1=read-write) u32 align;//in u8 kind;//in u8 pad[7]; u64 addr;//in } data; memset(&data, 0, sizeof(data)); data.handle = nvmap_handle; data.heapmask = heapmask; data.flags = flags; data.align = align; data.kind = kind; data.addr = (u64)addr; return nvIoctl(fd, _IOWR(0x01, 0x04, data), &data); } Result nvioctlNvmap_GetID(u32 fd, u32 nvmap_handle, u32 *id) { Result rc=0; struct { u32 id;//out u32 handle;//in } data; memset(&data, 0, sizeof(data)); data.handle = nvmap_handle; rc = nvIoctl(fd, _IOWR(0x01, 0x0E, data), &data); if (R_FAILED(rc)) return rc; *id = data.id; return rc; } Result nvioctlChannel_SetNvmapFd(u32 fd, u32 nvmap_fd) { struct { u32 fd;//in } data; memset(&data, 0, sizeof(data)); data.fd = nvmap_fd; return nvIoctl(fd, _IOW(0x48, 0x01, data), &data); } Result nvioctlChannel_SubmitGPFIFO(u32 fd, nvioctl_gpfifo_entry *entries, u32 num_entries, u32 flags, nvioctl_fence *fence_out) { Result rc=0; if(num_entries > 0x200) return MAKERESULT(MODULE_LIBNX, LIBNX_OUTOFMEM);//Make sure stack data doesn't get very large. struct { u64 gpfifo; // in (ignored) pointer to gpfifo fence structs u32 num_entries; // in number of fence objects being submitted u32 flags; // in nvioctl_fence fence_out; // out returned new fence object for others to wait on nvioctl_gpfifo_entry entries[num_entries]; // in depends on num_entries } data; memset(&data, 0, sizeof(data)); data.gpfifo = 1; data.num_entries = num_entries; data.flags = flags; memcpy(data.entries, entries, sizeof(data.entries)); rc = nvIoctl(fd, _IOWR(0x48, 0x08, data), &data); if (R_FAILED(rc)) return rc; if(fence_out) memcpy(fence_out, &data.fence_out, sizeof(data.fence_out)); return rc; } Result nvioctlChannel_AllocObjCtx(u32 fd, u32 class_num, u32 flags) { struct { u32 class_num; // 0x902D=2d, 0xB197=3d, 0xB1C0=compute, 0xA140=kepler, 0xB0B5=DMA, 0xB06F=channel_gpfifo u32 flags; u64 obj_id; // (ignored) used for FREE_OBJ_CTX ioctl, which is not supported } data; memset(&data, 0, sizeof(data)); data.class_num = class_num; data.flags = flags; data.obj_id = 0xDEADBEEF; return nvIoctl(fd, _IOWR(0x48, 0x09, data), &data); } Result nvioctlChannel_ZCullBind(u32 fd, u32 in[4]) { struct { u32 in[4]; } data; memset(&data, 0, sizeof(data)); memcpy(data.in, in, sizeof(data.in)); return nvIoctl(fd, _IOWR(0x48, 0x0B, data), &data); } Result nvioctlChannel_SetErrorNotifier(u32 fd, u64 offset, u64 size, u32 nvmap_handle) { struct { u64 offset;//in u64 size;//in u32 mem; //in nvmap object handle u32 padding;//in } data; memset(&data, 0, sizeof(data)); data.offset = offset; data.size = size; data.mem = nvmap_handle; return nvIoctl(fd, _IOWR(0x48, 0x0C, data), &data); } Result nvioctlChannel_SetPriority(u32 fd, u32 priority) { struct { u32 priority; //in 0x32 is low, 0x64 is medium and 0x96 is high } data; memset(&data, 0, sizeof(data)); data.priority = priority; return nvIoctl(fd, _IOW(0x48, 0x0D, data), &data); } Result nvioctlChannel_AllocGPFIFOEx2(u32 fd, u32 num_entries, u32 flags, u32 unk0, u32 unk1, u32 unk2, u32 unk3, nvioctl_fence *fence_out) { Result rc=0; struct { u32 num_entries; // in u32 flags; // in u32 unk0; // in (1 works) nvioctl_fence fence_out; // out u32 unk1; // in u32 unk2; // in u32 unk3; // in } data; memset(&data, 0, sizeof(data)); data.num_entries = num_entries; data.flags = flags; data.unk0 = unk0; data.unk1 = unk1; data.unk2 = unk2; data.unk3 = unk3; rc = nvIoctl(fd, _IOWR(0x48, 0x1A, data), &data); if (R_FAILED(rc)) return rc; if(fence_out) memcpy(fence_out, &data.fence_out, sizeof(data.fence_out)); return rc; } Result nvioctlChannel_SetUserData(u32 fd, void* addr) { struct { u64 addr; } data; memset(&data, 0, sizeof(data)); data.addr = (u64)addr; return nvIoctl(fd, _IOW(0x47, 0x14, data), &data); }