#include #include "types.h" #include "result.h" #include "services/nv.h" #include "nvidia/ioctl.h" Result nvioctlChannel_SetNvmapFd(u32 fd, u32 nvmap_fd) { struct { __nv_in u32 fd; } data; memset(&data, 0, sizeof(data)); data.fd = nvmap_fd; return nvIoctl(fd, _NV_IOW(0x48, 0x01, data), &data); } Result nvioctlChannel_SubmitGpfifo(u32 fd, nvioctl_gpfifo_entry *entries, u32 num_entries, u32 flags, nvioctl_fence *fence_out) { Result rc=0; // Make sure stack data doesn't get very large. if(num_entries > 0x200) return MAKERESULT(Module_Libnx, LibnxError_OutOfMemory); struct { __nv_in u64 gpfifo; // (ignored) pointer to gpfifo entry structs __nv_in u32 num_entries; // number of entries being submitted __nv_in u32 flags; __nv_out nvioctl_fence fence_out; // returned new fence object for others to wait on __nv_in nvioctl_gpfifo_entry entries[num_entries]; // depends on num_entries } data; memset(&data, 0, sizeof(data)); data.gpfifo = 1; data.num_entries = num_entries; data.flags = flags; memcpy(data.entries, entries, sizeof(data.entries)); rc = nvIoctl(fd, _NV_IOWR(0x48, 0x08, data), &data); if (R_SUCCEEDED(rc) && fence_out) { memcpy(fence_out, &data.fence_out, sizeof(data.fence_out)); } return rc; } Result nvioctlChannel_AllocObjCtx(u32 fd, u32 class_num, u32 flags, u64* id_out) { struct { __nv_in u32 class_num; __nv_in u32 flags; __nv_out u64 obj_id; // (ignored) used for FREE_OBJ_CTX ioctl, which is not supported } data; memset(&data, 0, sizeof(data)); data.class_num = class_num; data.flags = flags; data.obj_id = 0xDEADBEEF; Result rc = nvIoctl(fd, _NV_IOWR(0x48, 0x09, data), &data); if (R_SUCCEEDED(rc)) { if (id_out != NULL) { *id_out = data.obj_id; } } return rc; } Result nvioctlChannel_ZCullBind(u32 fd, u64 gpu_va, u32 mode) { struct { __nv_in u64 gpu_va; __nv_in u32 mode; __nv_in u32 padding; } data; memset(&data, 0, sizeof(data)); data.gpu_va = gpu_va; data.mode = mode; return nvIoctl(fd, _NV_IOWR(0x48, 0x0B, data), &data); } Result nvioctlChannel_SetErrorNotifier(u32 fd, u32 enable) { struct { __nv_in u64 offset; // not used __nv_in u64 size; // not used __nv_in u32 enable; u32 padding; } data; memset(&data, 0, sizeof(data)); data.offset = 0; data.size = 0; data.enable = enable; return nvIoctl(fd, _NV_IOWR(0x48, 0x0C, data), &data); } Result nvioctlChannel_SetPriority(u32 fd, u32 priority) { struct { __nv_in u32 priority; // 0x32 is low, 0x64 is medium and 0x96 is high } data; memset(&data, 0, sizeof(data)); data.priority = priority; return nvIoctl(fd, _NV_IOW(0x48, 0x0D, data), &data); } Result nvioctlChannel_AllocGpfifoEx2(u32 fd, u32 num_entries, u32 flags, u32 unk0, u32 unk1, u32 unk2, u32 unk3, nvioctl_fence *fence_out) { Result rc=0; struct { __nv_in u32 num_entries; __nv_in u32 flags; __nv_in u32 unk0; // (1 works) __nv_out nvioctl_fence fence_out; __nv_in u32 unk1; __nv_in u32 unk2; __nv_in u32 unk3; } data; memset(&data, 0, sizeof(data)); data.num_entries = num_entries; data.flags = flags; data.unk0 = unk0; data.unk1 = unk1; data.unk2 = unk2; data.unk3 = unk3; rc = nvIoctl(fd, _NV_IOWR(0x48, 0x1A, data), &data); if (R_SUCCEEDED(rc) && fence_out) { memcpy(fence_out, &data.fence_out, sizeof(data.fence_out)); } return rc; } Result nvioctlChannel_SetUserData(u32 fd, void* addr) { struct { __nv_in u64 addr; } data; memset(&data, 0, sizeof(data)); data.addr = (u64)addr; return nvIoctl(fd, _NV_IOW(0x47, 0x14, data), &data); }