hac2l/source/hactool_processor.npdm.cpp
2022-03-13 14:01:49 -07:00

987 lines
44 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include <vapours/svc/svc_definition_macro.hpp>
#include "hactool_processor.hpp"
namespace ams::hactool {
namespace {
Result ValidateSubregion(size_t allowed_start, size_t allowed_end, size_t start, size_t size, size_t min_size = 0) {
R_UNLESS(size >= min_size, ldr::ResultInvalidMeta());
R_UNLESS(allowed_start <= start, ldr::ResultInvalidMeta());
R_UNLESS(start <= allowed_end, ldr::ResultInvalidMeta());
R_UNLESS(start + size <= allowed_end, ldr::ResultInvalidMeta());
R_SUCCEED();
}
Result ValidateNpdm(const ldr::Npdm *npdm, size_t size) {
/* Validate magic. */
R_UNLESS(npdm->magic == ldr::Npdm::Magic, ldr::ResultInvalidMeta());
/* Validate Acid extents. */
R_TRY(ValidateSubregion(sizeof(ldr::Npdm), size, npdm->acid_offset, npdm->acid_size, sizeof(ldr::Acid)));
/* Validate Aci extends. */
R_TRY(ValidateSubregion(sizeof(ldr::Npdm), size, npdm->aci_offset, npdm->aci_size, sizeof(ldr::Aci)));
R_SUCCEED();
}
Result ValidateAcid(const ldr::Acid *acid, size_t size) {
/* Validate magic. */
R_UNLESS(acid->magic == ldr::Acid::Magic, ldr::ResultInvalidMeta());
/* Validate Fac, Sac, Kac. */
R_TRY(ValidateSubregion(sizeof(ldr::Acid), size, acid->fac_offset, acid->fac_size));
R_TRY(ValidateSubregion(sizeof(ldr::Acid), size, acid->sac_offset, acid->sac_size));
R_TRY(ValidateSubregion(sizeof(ldr::Acid), size, acid->kac_offset, acid->kac_size));
R_SUCCEED();
}
Result ValidateAci(const ldr::Aci *aci, size_t size) {
/* Validate magic. */
R_UNLESS(aci->magic == ldr::Aci::Magic, ldr::ResultInvalidMeta());
/* Validate Fah, Sac, Kac. */
R_TRY(ValidateSubregion(sizeof(ldr::Aci), size, aci->fah_offset, aci->fah_size));
R_TRY(ValidateSubregion(sizeof(ldr::Aci), size, aci->sac_offset, aci->sac_size));
R_TRY(ValidateSubregion(sizeof(ldr::Aci), size, aci->kac_offset, aci->kac_size));
R_SUCCEED();
}
/* See kern::KCapabilities, from which this is sourced. */
constexpr size_t InterruptIdCount = 0x400;
constexpr size_t SystemCallCount = 0xC0;
enum class CapabilityType : u32 {
CorePriority = (1u << 3) - 1,
SyscallMask = (1u << 4) - 1,
MapRange = (1u << 6) - 1,
MapIoPage = (1u << 7) - 1,
MapRegion = (1u << 10) - 1,
InterruptPair = (1u << 11) - 1,
ProgramType = (1u << 13) - 1,
KernelVersion = (1u << 14) - 1,
HandleTable = (1u << 15) - 1,
DebugFlags = (1u << 16) - 1,
Invalid = 0u,
Padding = ~0u,
};
using RawCapabilityValue = util::BitPack32::Field<0, BITSIZEOF(util::BitPack32), u32>;
static constexpr CapabilityType GetCapabilityType(const util::BitPack32 cap) {
const u32 value = cap.Get<RawCapabilityValue>();
return static_cast<CapabilityType>((~value & (value + 1)) - 1);
}
template<size_t Index, size_t Count, typename T = u32>
using Field = util::BitPack32::Field<Index, Count, T>;
#define DEFINE_FIELD(name, prev, ...) using name = Field<prev::Next, __VA_ARGS__>
template<CapabilityType Type>
static constexpr inline u32 CapabilityFlag = static_cast<u32>(Type) + 1;
template<CapabilityType Type>
static constexpr inline u32 CapabilityId = util::CountTrailingZeros<u32>(CapabilityFlag<Type>);
struct CorePriority {
using IdBits = Field<0, CapabilityId<CapabilityType::CorePriority> + 1>;
DEFINE_FIELD(LowestThreadPriority, IdBits, 6);
DEFINE_FIELD(HighestThreadPriority, LowestThreadPriority, 6);
DEFINE_FIELD(MinimumCoreId, HighestThreadPriority, 8);
DEFINE_FIELD(MaximumCoreId, MinimumCoreId, 8);
};
struct SyscallMask {
using IdBits = Field<0, CapabilityId<CapabilityType::SyscallMask> + 1>;
DEFINE_FIELD(Mask, IdBits, 24);
DEFINE_FIELD(Index, Mask, 3);
};
/* NOTE: This always parses as though a mesosphere extension is true to use 40 pa bits instead of 36. */
struct MapRange {
using IdBits = Field<0, CapabilityId<CapabilityType::MapRange> + 1>;
DEFINE_FIELD(Address, IdBits, 24);
DEFINE_FIELD(ReadOnly, Address, 1, bool);
};
struct MapRangeSize {
using IdBits = Field<0, CapabilityId<CapabilityType::MapRange> + 1>;
DEFINE_FIELD(Pages, IdBits, 20);
DEFINE_FIELD(AddressHigh, Pages, 4);
DEFINE_FIELD(Normal, AddressHigh, 1, bool);
};
struct MapIoPage {
using IdBits = Field<0, CapabilityId<CapabilityType::MapIoPage> + 1>;
DEFINE_FIELD(Address, IdBits, 24);
};
enum class RegionType : u32 {
None = 0,
KernelTraceBuffer = 1,
OnMemoryBootImage = 2,
DTB = 3,
};
struct MapRegion {
using IdBits = Field<0, CapabilityId<CapabilityType::MapRegion> + 1>;
DEFINE_FIELD(Region0, IdBits, 6, RegionType);
DEFINE_FIELD(ReadOnly0, Region0, 1, bool);
DEFINE_FIELD(Region1, ReadOnly0, 6, RegionType);
DEFINE_FIELD(ReadOnly1, Region1, 1, bool);
DEFINE_FIELD(Region2, ReadOnly1, 6, RegionType);
DEFINE_FIELD(ReadOnly2, Region2, 1, bool);
};
static const u32 PaddingInterruptId = 0x3FF;
static_assert(PaddingInterruptId < InterruptIdCount);
struct InterruptPair {
using IdBits = Field<0, CapabilityId<CapabilityType::InterruptPair> + 1>;
DEFINE_FIELD(InterruptId0, IdBits, 10);
DEFINE_FIELD(InterruptId1, InterruptId0, 10);
};
struct ProgramType {
using IdBits = Field<0, CapabilityId<CapabilityType::ProgramType> + 1>;
DEFINE_FIELD(Type, IdBits, 3);
DEFINE_FIELD(Reserved, Type, 15);
};
struct KernelVersion {
using IdBits = Field<0, CapabilityId<CapabilityType::KernelVersion> + 1>;
DEFINE_FIELD(MinorVersion, IdBits, 4);
DEFINE_FIELD(MajorVersion, MinorVersion, 13);
};
struct HandleTable {
using IdBits = Field<0, CapabilityId<CapabilityType::HandleTable> + 1>;
DEFINE_FIELD(Size, IdBits, 10);
DEFINE_FIELD(Reserved, Size, 6);
};
struct DebugFlags {
using IdBits = Field<0, CapabilityId<CapabilityType::DebugFlags> + 1>;
DEFINE_FIELD(AllowDebug, IdBits, 1, bool);
DEFINE_FIELD(ForceDebug, AllowDebug, 1, bool);
DEFINE_FIELD(Reserved, ForceDebug, 13);
};
#undef DEFINE_FIELD
struct InterruptFlagSetTag{};
using InterruptFlagSet = util::BitFlagSet<InterruptIdCount, InterruptFlagSetTag>;
struct SystemCallFlagSetTag{};
using SystemCallFlagSet = util::BitFlagSet<SystemCallCount, SystemCallFlagSetTag>;
class MappedRange : public util::IntrusiveRedBlackTreeBaseNode<MappedRange> {
private:
u64 m_address;
size_t m_size;
bool m_read_only;
public:
MappedRange(u64 a, size_t s, bool ro) : m_address(a), m_size(s), m_read_only(ro) { /* ... */ }
constexpr u64 GetAddress() const { return m_address; }
constexpr size_t GetSize() const { return m_size; }
constexpr bool IsReadOnly() const { return m_read_only; }
};
struct MappedRangeCompare {
using RedBlackKeyType = uintptr_t;
static constexpr ALWAYS_INLINE int Compare(const RedBlackKeyType a, const RedBlackKeyType &b) {
if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else {
return 0;
}
}
static constexpr ALWAYS_INLINE int Compare(const RedBlackKeyType &a, const MappedRange &b) {
return Compare(a, b.GetAddress());
}
static constexpr ALWAYS_INLINE int Compare(const MappedRange &a, const MappedRange &b) {
return Compare(a.GetAddress(), b.GetAddress());
}
};
using MappedRangeTree = util::IntrusiveRedBlackTreeBaseTraits<MappedRange>::TreeType<MappedRangeCompare>;
struct MappedRangeHolder {
private:
MappedRangeTree m_tree;
public:
MappedRangeHolder() : m_tree() { /* ... */ }
~MappedRangeHolder() {
while (!m_tree.empty()) {
auto it = m_tree.begin();
while (it != m_tree.end()) {
auto *region = std::addressof(*it);
it = m_tree.erase(it);
delete region;
}
}
}
void Insert(u64 a, size_t s, bool ro) {
m_tree.insert(*(new MappedRange(a, s, ro)));
}
auto begin() const { return m_tree.begin(); }
auto end() const { return m_tree.end(); }
};
const char *GetSystemCallName(size_t i) {
#define EMPTY_HANDLER(TYPE, NAME)
#define RETURN_NAME_HANDLER(ID, _, NAME, ...) if (i == ID) { return #NAME ; }
AMS_SVC_FOREACH_DEFINITION_IMPL(RETURN_NAME_HANDLER, _, EMPTY_HANDLER, EMPTY_HANDLER, EMPTY_HANDLER, EMPTY_HANDLER)
#undef EMPTY_HANDLER
#undef RETURN_NAME_HANDLER
return "Unknown";
}
class AccessControlEntry {
private:
const u8 *m_entry;
size_t m_capacity;
public:
AccessControlEntry(const void *e, size_t c) : m_entry(static_cast<const u8 *>(e)), m_capacity(c) {
/* ... */
}
AccessControlEntry GetNextEntry() const {
return AccessControlEntry(m_entry + this->GetSize(), m_capacity - this->GetSize());
}
size_t GetSize() const {
return this->GetServiceNameSize() + 1;
}
size_t GetServiceNameSize() const {
return (m_entry[0] & 7) + 1;
}
sm::ServiceName GetServiceName() const {
return sm::ServiceName::Encode(reinterpret_cast<const char *>(m_entry + 1), this->GetServiceNameSize());
}
bool IsHost() const {
return (m_entry[0] & 0x80) != 0;
}
bool IsWildcard() const {
return m_entry[this->GetServiceNameSize()] == '*';
}
bool IsValid() const {
/* Validate that we can access data. */
if (m_entry == nullptr || m_capacity == 0) {
return false;
}
/* Validate that the size is correct. */
return this->GetSize() <= m_capacity;
}
void GetName(char *dst) {
std::memcpy(dst, m_entry + 1, this->GetServiceNameSize());
dst[this->GetServiceNameSize()] = 0;
}
};
bool IsAllowedAccessControl(AccessControlEntry access_control, sm::ServiceName service, bool is_host, bool is_wildcard) {
/* Iterate over all entries in the access control, checking to see if we have a match. */
while (access_control.IsValid()) {
if (access_control.IsHost() == is_host) {
bool is_valid = true;
if (access_control.IsWildcard() == is_wildcard) {
/* Check for exact match. */
is_valid &= access_control.GetServiceName() == service;
} else if (access_control.IsWildcard()) {
/* Also allow fuzzy match for wildcard. */
sm::ServiceName ac_service = access_control.GetServiceName();
is_valid &= std::memcmp(std::addressof(ac_service), std::addressof(service), access_control.GetServiceNameSize() - 1) == 0;
}
if (is_valid) {
return true;
}
}
access_control = access_control.GetNextEntry();
}
return false;
}
}
/* Procesing. */
Result Processor::ProcessAsNpdm(std::shared_ptr<fs::IStorage> storage, ProcessAsNpdmContext *ctx) {
/* Ensure we have a context. */
ProcessAsNpdmContext local_ctx{};
if (ctx == nullptr) {
ctx = std::addressof(local_ctx);
}
/* Set the storage. */
ctx->storage = std::move(storage);
/* Get the npdm's size. */
s64 total_size;
R_TRY(ctx->storage->GetSize(std::addressof(total_size)));
/* Basic sanity checks. */
if (total_size > static_cast<s64>(32_KB)) {
fprintf(stderr, "[Warning]: Npdm is much larger than expected. Is file type correct?\n");
R_THROW(ldr::ResultMetaOverflow());
}
if (total_size < static_cast<s64>(sizeof(ldr::Npdm))) {
fprintf(stderr, "[Warning]: Npdm is too small. Is file type correct?\n");
R_THROW(ldr::ResultInvalidMeta());
}
/* Ensure size is small enough. */
/* Allocate space to hold the npdm. */
ctx->raw_data = std::make_unique<u8[]>(static_cast<size_t>(total_size));
R_UNLESS(ctx->raw_data != nullptr, fs::ResultAllocationMemoryFailedMakeUnique());
/* Read the npdm. */
R_TRY(ctx->storage->Read(0, ctx->raw_data.get(), total_size));
/* Begin processing. */
const u8 *file_data = static_cast<const u8 *>(ctx->raw_data.get());
/* Set npdm. */
const auto *npdm = reinterpret_cast<const ldr::Npdm *>(file_data);
R_TRY(ValidateNpdm(npdm, total_size));
ctx->npdm = npdm;
/* Npdm is valid, so try ACI. */
const auto *acid = reinterpret_cast<const ldr::Acid *>(file_data + ctx->npdm->acid_offset);
R_TRY(ValidateAcid(acid, ctx->npdm->acid_size));
ctx->acid = acid;
const auto *aci = reinterpret_cast<const ldr::Aci *>(file_data + ctx->npdm->aci_offset);
R_TRY(ValidateAci(aci, ctx->npdm->aci_size));
ctx->aci = aci;
/* Set remaining members. */
ctx->acid_fac = file_data + ctx->npdm->acid_offset + acid->fac_offset;
ctx->acid_sac = file_data + ctx->npdm->acid_offset + acid->sac_offset;
ctx->acid_kac = file_data + ctx->npdm->acid_offset + acid->kac_offset;
ctx->aci_fah = file_data + ctx->npdm->aci_offset + aci->fah_offset;
ctx->aci_sac = file_data + ctx->npdm->aci_offset + aci->sac_offset;
ctx->aci_kac = file_data + ctx->npdm->aci_offset + aci->kac_offset;
ctx->modulus = acid->modulus;
/* Print. */
if (ctx == std::addressof(local_ctx)) {
this->PrintAsNpdm(*ctx);
}
/* Save. */
if (ctx == std::addressof(local_ctx)) {
this->SaveAsNpdm(*ctx);
}
R_SUCCEED();
}
/* Printing. */
void Processor::PrintAsNpdm(ProcessAsNpdmContext &ctx) {
if (ctx.npdm == nullptr) {
return;
}
auto _ = this->PrintHeader("NPDM");
this->PrintMagic(ctx.npdm->magic);
this->PrintHex2("Flags", ctx.npdm->flags);
{
auto _ = this->IncreaseIndentation();
using enum ldr::Npdm::MetaFlag;
using enum ldr::Npdm::AddressSpaceType;
this->PrintBool("Is64Bit", ctx.npdm->flags & MetaFlag_Is64Bit);
switch (static_cast<ldr::Npdm::AddressSpaceType>((ctx.npdm->flags & MetaFlag_AddressSpaceTypeMask) >> MetaFlag_AddressSpaceTypeShift)) {
case AddressSpaceType_32Bit: this->PrintString("Address Space Type", "32Bit"); break;
case AddressSpaceType_64BitDeprecated: this->PrintString("Address Space Type", "64BitDeprecated"); break;
case AddressSpaceType_32BitWithoutAlias: this->PrintString("Address Space Type", "32BitWithoutAlias"); break;
case AddressSpaceType_64Bit: this->PrintString("Address Space Type", "64Bit"); break;
}
this->PrintBool("Optimize Memory Allocation", ctx.npdm->flags & MetaFlag_OptimizeMemoryAllocation);
this->PrintBool("Disable Device Address Space Merge", ctx.npdm->flags & MetaFlag_DisableDeviceAddressSpaceMerge);
}
this->PrintInteger("Main Thread Priority", ctx.npdm->main_thread_priority);
this->PrintInteger("Default Cpu Id", ctx.npdm->default_cpu_id);
this->PrintFormat("Version", "%" PRIu32 ".%" PRIu32 ".%" PRIu32 ".%" PRIu32 " (%" PRIu32")", (ctx.npdm->version >> 26) & 0x3F, (ctx.npdm->version >> 20) & 0x3F, (ctx.npdm->version >> 16) & 0x3F, (ctx.npdm->version >> 0) & 0xFFFF, ctx.npdm->version);
this->PrintHex("Main Thread Stack Size", ctx.npdm->main_thread_stack_size);
this->PrintHex("System Resource Size", ctx.npdm->system_resource_size);
this->PrintString("Program Name", ctx.npdm->program_name);
/* Print acid, if present. */
if (ctx.acid != nullptr) {
auto _ = this->PrintHeader("ACID");
this->PrintMagic(ctx.acid->magic);
this->PrintHex("Version", ctx.acid->version);
this->PrintHex("Sign Key Generation", ctx.npdm->signature_key_generation);
this->PrintBytes("Signature", ctx.acid->signature, sizeof(ctx.acid->signature));
this->PrintBytes("HeaderSign2 Modulus", ctx.acid->modulus, sizeof(ctx.acid->modulus));
this->PrintHex2("Flags", ctx.acid->flags);
{
auto _ = this->IncreaseIndentation();
using enum ldr::Acid::AcidFlag;
using enum ldr::Acid::PoolPartition;
this->PrintBool("Production", ctx.acid->flags & AcidFlag_Production);
this->PrintBool("Unqualified Approval", ctx.acid->flags & AcidFlag_UnqualifiedApproval);
switch (static_cast<ldr::Acid::PoolPartition>((ctx.acid->flags & AcidFlag_PoolPartitionMask) >> AcidFlag_PoolPartitionShift)) {
case PoolPartition_Application: this->PrintString("Pool Partition", "Application"); break;
case PoolPartition_Applet: this->PrintString("Pool Partition", "Applet"); break;
case PoolPartition_System: this->PrintString("Pool Partition", "System"); break;
case PoolPartition_SystemNonSecure: this->PrintString("Pool Partition", "SystemNonSecure"); break;
}
this->PrintFormat("Program Id Range", "%016" PRIx64 "-%016" PRIx64, ctx.acid->program_id_min.value, ctx.acid->program_id_max.value);
}
}
/* Print aci, if present. */
if (ctx.aci != nullptr) {
auto _ = this->PrintHeader("ACI");
this->PrintMagic(ctx.aci->magic);
this->PrintId64("Program Id", ctx.aci->program_id.value);
}
/* Print kernel access control. */
{
auto PrintKernelAccessControl = [&] (const char *name, const util::BitPack32 *caps, size_t num_caps) {
auto _ = this->PrintHeader(name);
util::optional<util::BitPack32> core_prio = util::nullopt;
SystemCallFlagSet system_calls{};
InterruptFlagSet interrupts{};
util::optional<util::BitPack32> program_type = util::nullopt;
util::optional<util::BitPack32> kernel_version = util::nullopt;
util::optional<util::BitPack32> handle_table = util::nullopt;
util::optional<util::BitPack32> debug_flags = util::nullopt;
util::optional<util::BitPack32> mapped_regions = util::nullopt;
MappedRangeHolder mapped_static_ranges{};
MappedRangeHolder mapped_io_ranges{};
util::optional<util::BitPack32> unknown_caps[0x40]{};
size_t num_unknown_caps = 0;
/* Walk all caps. */
for (size_t i = 0; i < num_caps; ++i) {
switch (GetCapabilityType(caps[i])) {
using enum CapabilityType;
case CorePriority:
if (core_prio.has_value()) {
fprintf(stderr, "[Warning]: KernelAccessControl contains multiple CorePriority capabilities\n");
}
core_prio = caps[i];
break;
case SyscallMask:
{
const auto mask = caps[i].Get<SyscallMask::Mask>();
const auto index = caps[i].Get<SyscallMask::Index>();
for (size_t n = 0; n < SyscallMask::Mask::Count; ++n) {
const u32 svc_id = SyscallMask::Mask::Count * index + n;
if (mask & (1u << n)) {
system_calls[svc_id] = true;
}
}
}
break;
case MapRange:
{
if (i + 1 < num_caps) {
const auto cap = caps[i++];
const auto size_cap = caps[i];
if (GetCapabilityType(size_cap) == MapRange) {
const u64 phys_addr = static_cast<u64>(cap.Get<MapRange::Address>() | (size_cap.Get<MapRangeSize::AddressHigh>() << MapRange::Address::Count)) * os::MemoryPageSize;
const size_t num_pages = size_cap.Get<MapRangeSize::Pages>();
const size_t size = num_pages * os::MemoryPageSize;
const bool is_ro = cap.Get<MapRange::ReadOnly>();
if (size_cap.Get<MapRangeSize::Normal>()) {
mapped_static_ranges.Insert(phys_addr, size, is_ro);
} else {
mapped_io_ranges.Insert(phys_addr, size, is_ro);
}
} else {
fprintf(stderr, "[Warning]: KernelAccessControl contains invalid MapRange pair\n");
}
} else {
fprintf(stderr, "[Warning]: KernelAccessControl truncates during MapRange pair\n");
}
}
break;
case MapIoPage:
{
const u64 phys_addr = caps[i].Get<MapIoPage::Address>() * os::MemoryPageSize;
mapped_io_ranges.Insert(phys_addr, os::MemoryPageSize, false);
}
break;
case MapRegion:
if (mapped_regions.has_value()) {
fprintf(stderr, "[Warning]: KernelAccessControl contains multiple MapRegion capabilities\n");
}
mapped_regions = caps[i];
break;
case InterruptPair:
{
const u32 ids[2] = { caps[i].Get<InterruptPair::InterruptId0>(), caps[i].Get<InterruptPair::InterruptId1>(), };
for (size_t i = 0; i < util::size(ids); ++i) {
if (ids[i] != PaddingInterruptId) {
interrupts[ids[i]] = true;
}
}
}
break;
case ProgramType:
if (program_type.has_value()) {
fprintf(stderr, "[Warning]: KernelAccessControl contains multiple ProgramType capabilities\n");
}
program_type = caps[i];
break;
case KernelVersion:
if (kernel_version.has_value()) {
fprintf(stderr, "[Warning]: KernelAccessControl contains multiple KernelVersion capabilities\n");
}
kernel_version = caps[i];
break;
case HandleTable:
if (handle_table.has_value()) {
fprintf(stderr, "[Warning]: KernelAccessControl contains multiple HandleTable capabilities\n");
}
handle_table = caps[i];
break;
case DebugFlags:
if (debug_flags.has_value()) {
fprintf(stderr, "[Warning]: KernelAccessControl contains multiple DebugFlags capabilities\n");
}
debug_flags = caps[i];
break;
case Invalid:
fprintf(stderr, "[Warning]: KernelAccessControl contains invalid capability\n");
break;
case Padding:
break;
default:
AMS_ABORT_UNLESS(num_unknown_caps < util::size(unknown_caps));
unknown_caps[num_unknown_caps++] = caps[i];
break;
}
}
/* Print parsed caps. */
if (core_prio.has_value()) {
const auto cap = core_prio.value();
this->PrintInteger("Lowest Thread Priority", cap.Get<CorePriority::LowestThreadPriority>());
this->PrintInteger("Highest Thread Priority", cap.Get<CorePriority::HighestThreadPriority>());
this->PrintInteger("Minimum Core Id", cap.Get<CorePriority::MinimumCoreId>());
this->PrintInteger("Maximum Core Id", cap.Get<CorePriority::MaximumCoreId>());
}
/* Print system calls. */
{
const char *field_name = "Allowed System Calls";
for (size_t i = 0; i < SystemCallCount; ++i) {
if (!system_calls[i]) {
continue;
}
this->PrintFormat(field_name, "%-35s (0x%02" PRIX32 ")", GetSystemCallName(i), static_cast<u32>(i));
field_name = "";
}
}
/* Print mapped io ranges. */
{
const char *field_name = "Mapped Io Ranges";
for (const auto &range : mapped_io_ranges) {
this->PrintFormat(field_name, "(%010" PRIX64 "-%010" PRIX64 ", %s", range.GetAddress(), range.GetAddress() + range.GetSize(), range.IsReadOnly() ? "R--" : "RW-");
field_name = "";
}
}
/* Print mapped normal ranges. */
{
const char *field_name = "Mapped Normal Ranges";
for (const auto &range : mapped_static_ranges) {
this->PrintFormat(field_name, "(%010" PRIX64 "-%010" PRIX64 ", %s", range.GetAddress(), range.GetAddress() + range.GetSize(), range.IsReadOnly() ? "R--" : "RW-");
field_name = "";
}
}
/* Print mapped regions. */
if (mapped_regions.has_value()) {
/* Extract regions/read only. */
const auto cap = mapped_regions.value();
const RegionType types[3] = { cap.Get<MapRegion::Region0>(), cap.Get<MapRegion::Region1>(), cap.Get<MapRegion::Region2>(), };
const bool ro[3] = { cap.Get<MapRegion::ReadOnly0>(), cap.Get<MapRegion::ReadOnly1>(), cap.Get<MapRegion::ReadOnly2>(), };
const char *field_name = "Mapped Regions";
for (size_t i = 0; i < util::size(types); ++i) {
switch (types[i]) {
using enum RegionType;
case None:
break;
case KernelTraceBuffer:
this->PrintFormat(field_name, "KernelTraceBuffer (%s)", ro[i] ? "R--" : "RW-");
field_name = "";
break;
case OnMemoryBootImage:
this->PrintFormat(field_name, "OnMemoryBootImage (%s)", ro[i] ? "R--" : "RW-");
field_name = "";
break;
case DTB:
this->PrintFormat(field_name, "DeviceTreeBlob (%s)", ro[i] ? "R--" : "RW-");
field_name = "";
break;
default:
this->PrintFormat(field_name, "Unknown (%d) (%s)", static_cast<int>(types[i]), ro[i] ? "R--" : "RW-");
field_name = "";
break;
}
}
}
/* Print interrupts. */
{
const char *field_name = "Mapped Interrupts";
for (size_t i = 0; i < InterruptIdCount; ++i) {
if (!interrupts[i]) {
continue;
}
this->PrintFormat(field_name, "0x%03" PRIX32, static_cast<u32>(i));
field_name = "";
}
}
/* Program Type. */
if (program_type.has_value()) {
const auto type = program_type.value().Get<ProgramType::Type>();
switch (type) {
case 0: this->PrintString("Program Type", "System Program"); break;
case 1: this->PrintString("Program Type", "Application"); break;
case 2: this->PrintString("Program Type", "Applet"); break;
default:
this->PrintFormat("Program Type", "Unknown (%d)", static_cast<int>(type));
break;
}
}
/* Kernel Version. */
if (kernel_version.has_value()) {
const u32 major = kernel_version.value().Get<KernelVersion::MajorVersion>();
const u32 minor = kernel_version.value().Get<KernelVersion::MinorVersion>();
this->PrintFormat("Minimum Kernel Version", "%" PRIu32 ".%" PRIu32, major, minor);
}
/* Handle Table. */
if (handle_table.has_value()) {
this->PrintInteger("Handle Table Size", static_cast<int>(handle_table.value().Get<HandleTable::Size>()));
}
/* Debug flags. */
if (debug_flags.has_value()) {
this->PrintBool("Allow Debug", debug_flags.value().Get<DebugFlags::AllowDebug>());
this->PrintBool("Force Debug", debug_flags.value().Get<DebugFlags::ForceDebug>());
}
/* Unknown capabilities. */
{
const char *field_name = "Unknown Capabilities";
for (size_t i = 0; i < num_unknown_caps; ++i) {
const auto type = GetCapabilityType(unknown_caps[i].value());
this->PrintFormat(field_name, "(Type %d, Value 0x%08" PRIX32 ")", static_cast<int>(type), unknown_caps[i].value().value);
}
}
};
if (ctx.acid_kac != nullptr && ctx.aci_kac != nullptr && ctx.acid->kac_size == ctx.aci->kac_size && std::memcmp(ctx.acid_kac, ctx.aci_kac, ctx.acid->kac_size) == 0) {
PrintKernelAccessControl("Kernel Access Control", static_cast<const util::BitPack32 *>(ctx.acid_kac), ctx.acid->kac_size / sizeof(util::BitPack32));
} else {
if (ctx.acid_kac != nullptr) {
PrintKernelAccessControl("Acid Kernel Access Control", static_cast<const util::BitPack32 *>(ctx.acid_kac), ctx.acid->kac_size / sizeof(util::BitPack32));
}
if (ctx.aci_kac != nullptr) {
PrintKernelAccessControl("Aci Kernel Access Control", static_cast<const util::BitPack32 *>(ctx.aci_kac), ctx.aci->kac_size / sizeof(util::BitPack32));
}
}
}
/* Print Service Access Control. */
if (ctx.acid_sac != nullptr && ctx.aci_sac != nullptr) {
auto PrintServiceAccessControl = [&] (const char *name, AccessControlEntry access_control, auto get_allowed_summary) {
auto _ = this->PrintHeader(name);
const char *field_name = "Hosts";
for (auto cur = access_control; cur.IsValid(); cur = cur.GetNextEntry()) {
if (cur.IsHost()) {
char name[sizeof(sm::ServiceName) + 1];
cur.GetName(name);
this->PrintFormat(field_name, "%-16s%s", name, get_allowed_summary(cur));
field_name = "";
}
}
field_name = "Accesses";
for (auto cur = access_control; cur.IsValid(); cur = cur.GetNextEntry()) {
if (!cur.IsHost()) {
char name[sizeof(sm::ServiceName) + 1];
cur.GetName(name);
this->PrintFormat(field_name, "%-16s%s", name, get_allowed_summary(cur));
field_name = "";
}
}
};
AccessControlEntry restriction(ctx.acid_sac, ctx.acid->sac_size);
AccessControlEntry access_control(ctx.aci_sac, ctx.aci->sac_size);
PrintServiceAccessControl("Service Access Control", access_control, [&] (AccessControlEntry entry) -> const char * {
if (IsAllowedAccessControl(restriction, entry.GetServiceName(), entry.IsHost(), entry.IsWildcard())) {
return "";
} else {
return "(Invalid)";
}
});
if (ctx.acid->sac_size != ctx.aci->sac_size || std::memcmp(ctx.acid_sac, ctx.aci_sac, ctx.acid->sac_size) != 0) {
PrintServiceAccessControl("Service Access Control Restrictiction", restriction, [&] (AccessControlEntry) -> const char * {
return "";
});
}
}
/* Print FileSystem Access Control. */
if (ctx.acid_fac != nullptr && ctx.aci_fah != nullptr){
auto _ = this->PrintHeader("FileSystem Access Control");
/* Get the old debug flag. */
const bool is_fssrv_debug = fssrv::IsDebugFlagEnabled();
ON_SCOPE_EXIT { fssrv::SetDebugFlagEnabled(is_fssrv_debug); };
/* Create access controls. */
fssrv::SetDebugFlagEnabled(true);
fssrv::impl::AccessControl access_control(ctx.aci_fah, ctx.aci->fah_size, ctx.acid_fac, ctx.acid->fac_size);
fssrv::SetDebugFlagEnabled(false);
fssrv::impl::AccessControl access_control_no_debug(ctx.aci_fah, ctx.aci->fah_size, ctx.acid_fac, ctx.acid->fac_size);
/* Print raw permissions. */
this->PrintHex16("Raw AccessControlBits", access_control.GetRawFlagBits());
const char *field_name = "AccessControlBits";
for (size_t i = 0; i < BITSIZEOF(u64); ++i) {
const u64 mask = UINT64_C(1) << i;
if (access_control.GetRawFlagBits() & mask) {
this->PrintString(field_name, fs::impl::IdString().ToString(static_cast<fssrv::impl::AccessControlBits::Bits>(mask)));
field_name = "";
}
}
/* Print accessibilities. */
field_name = "Accessibilities";
for (s32 i = 0; i < static_cast<s32>(fssrv::impl::AccessControl::AccessibilityType::Count); ++i) {
/* Convert to type. */
const auto type = static_cast<fssrv::impl::AccessControl::AccessibilityType>(i);
/* Get the accessibilities. */
fssrv::SetDebugFlagEnabled(false);
const auto accessibility_no_debug = access_control_no_debug.GetAccessibilityFor(type);
if (accessibility_no_debug.CanRead() || accessibility_no_debug.CanWrite()) {
this->PrintFormat(field_name, "%-44s (%c%c)", fs::impl::IdString().ToString(type), accessibility_no_debug.CanRead() ? 'R' : '-', accessibility_no_debug.CanWrite() ? 'W' : '-');
field_name = "";
}
}
/* Print debug accessibilities. */
field_name = "Debug-Only Accessibilities";
for (s32 i = 0; i < static_cast<s32>(fssrv::impl::AccessControl::AccessibilityType::Count); ++i) {
/* Convert to type. */
const auto type = static_cast<fssrv::impl::AccessControl::AccessibilityType>(i);
/* Get the accessibilities. */
fssrv::SetDebugFlagEnabled(true);
const auto accessibility = access_control.GetAccessibilityFor(type);
fssrv::SetDebugFlagEnabled(false);
const auto accessibility_no_debug = access_control_no_debug.GetAccessibilityFor(type);
/* Ensure that the debug is a superset of the non-debug. */
AMS_ABORT_UNLESS(!accessibility_no_debug.CanRead() || accessibility.CanRead());
AMS_ABORT_UNLESS(!accessibility_no_debug.CanWrite() || accessibility.CanWrite());
if ((accessibility.CanRead() && !accessibility_no_debug.CanRead()) || (accessibility.CanWrite() && !accessibility_no_debug.CanWrite())) {
this->PrintFormat(field_name, "%-44s (%c%c)", fs::impl::IdString().ToString(type), accessibility.CanRead() ? 'R' : '-', accessibility.CanWrite() ? 'W' : '-');
field_name = "";
}
}
/* Print operations. */
field_name = "Operations";
for (s32 i = 0; i < static_cast<s32>(fssrv::impl::AccessControl::OperationType::Count); ++i) {
/* Convert to type. */
const auto type = static_cast<fssrv::impl::AccessControl::OperationType>(i);
if (type == fssrv::impl::AccessControl::OperationType::Debug) {
continue;
}
/* Get the callabilities. */
fssrv::SetDebugFlagEnabled(false);
const auto can_call_no_debug = access_control_no_debug.CanCall(type);
if (can_call_no_debug) {
this->PrintString(field_name, fs::impl::IdString().ToString(type));
field_name = "";
}
}
/* Print debug operations. */
field_name = "Debug-Only Operations";
for (s32 i = 0; i < static_cast<s32>(fssrv::impl::AccessControl::OperationType::Count); ++i) {
/* Convert to type. */
const auto type = static_cast<fssrv::impl::AccessControl::OperationType>(i);
if (type == fssrv::impl::AccessControl::OperationType::Debug) {
continue;
}
/* Get the callabilities. */
fssrv::SetDebugFlagEnabled(true);
const auto can_call = access_control.CanCall(type);
fssrv::SetDebugFlagEnabled(false);
const auto can_call_no_debug = access_control_no_debug.CanCall(type);
/* Ensure that the debug is a superset of the non-debug. */
AMS_ABORT_UNLESS(!can_call_no_debug || can_call);
if (can_call && !can_call_no_debug) {
this->PrintString(field_name, fs::impl::IdString().ToString(type));
field_name = "";
}
}
/* Print Content Owner Ids. */
field_name = "Content Owner Ids";
s32 count;
access_control.ListContentOwnerId(std::addressof(count), nullptr, 0, 0);
{
u64 content_owner_ids[16];
s32 ofs = 0;
while (ofs < count) {
s32 cur_read = 0;
access_control.ListContentOwnerId(std::addressof(cur_read), content_owner_ids, ofs, static_cast<int>(util::size(content_owner_ids)));
for (s32 i = 0; i < cur_read; ++i) {
this->PrintId64(field_name, content_owner_ids[i]);
field_name = "";
}
ofs += cur_read;
}
}
/* Print SaveDataOwnerIds. */
field_name = "SaveData Owned Ids";
access_control.ListSaveDataOwnedId(std::addressof(count), nullptr, 0, 0);
{
ncm::ApplicationId save_data_owned_id[16];
s32 ofs = 0;
while (ofs < count) {
s32 cur_read = 0;
access_control.ListSaveDataOwnedId(std::addressof(cur_read), save_data_owned_id, ofs, static_cast<int>(util::size(save_data_owned_id)));
for (s32 i = 0; i < cur_read; ++i) {
const u64 id = save_data_owned_id[i].value;
const auto accessibility = access_control.GetAccessibilitySaveDataOwnedBy(id);
this->PrintFormat(field_name, "%016" PRIX64 " (%c%c)", id, accessibility.CanRead() ? 'R' : '-', accessibility.CanWrite() ? 'W' : '-');
field_name = "";
}
ofs += cur_read;
}
}
}
}
/* Saving. */
void Processor::SaveAsNpdm(ProcessAsNpdmContext &ctx) {
/* TODO */
AMS_UNUSED(ctx);
}
}