mirror of
				https://github.com/Atmosphere-NX/Atmosphere.git
				synced 2025-10-31 11:15:51 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			261 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			261 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) Atmosphère-NX
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include <vapours.hpp>
 | |
| 
 | |
| namespace ams::crypto::impl {
 | |
| 
 | |
|     namespace {
 | |
| 
 | |
|         alignas(Sha256Impl::BlockSize) constexpr const u32 RoundConstants[0x40] = {
 | |
|             0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
 | |
|             0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
 | |
|             0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
 | |
|             0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
 | |
|             0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
 | |
|             0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
 | |
|             0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
 | |
|             0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
 | |
|             0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
 | |
|             0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
 | |
|             0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
 | |
|             0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
 | |
|             0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
 | |
|             0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
 | |
|             0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
 | |
|             0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
 | |
|         };
 | |
| 
 | |
|         constexpr ALWAYS_INLINE u32 Choose(u32 x, u32 y, u32 z) {
 | |
|             return (x & y) ^ ((~x) & z);
 | |
|         }
 | |
| 
 | |
|         constexpr ALWAYS_INLINE u32 Majority(u32 x, u32 y, u32 z) {
 | |
|             return (x & y) ^ (x & z) ^ (y & z);
 | |
|         }
 | |
| 
 | |
|         constexpr ALWAYS_INLINE u32 LargeSigma0(u32 x) {
 | |
|             return util::RotateRight<u32>(x, 2) ^ util::RotateRight<u32>(x, 13) ^ util::RotateRight<u32>(x, 22);
 | |
|         }
 | |
| 
 | |
|         constexpr ALWAYS_INLINE u32 LargeSigma1(u32 x) {
 | |
|             return util::RotateRight<u32>(x, 6) ^ util::RotateRight<u32>(x, 11) ^ util::RotateRight<u32>(x, 25);
 | |
|         }
 | |
| 
 | |
|         constexpr ALWAYS_INLINE u32 SmallSigma0(u32 x) {
 | |
|             return util::RotateRight<u32>(x, 7) ^ util::RotateRight<u32>(x, 18) ^ (x >> 3);
 | |
|         }
 | |
| 
 | |
|         constexpr ALWAYS_INLINE u32 SmallSigma1(u32 x) {
 | |
|             return util::RotateRight<u32>(x, 17) ^ util::RotateRight<u32>(x, 19) ^ (x >> 10);
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     void Sha256Impl::Initialize() {
 | |
|         /* Reset buffered bytes/bits. */
 | |
|         m_buffered_bytes = 0;
 | |
|         m_bits_consumed  = 0;
 | |
| 
 | |
|         /* Set intermediate hash. */
 | |
|         m_intermediate_hash[0] = 0x6A09E667;
 | |
|         m_intermediate_hash[1] = 0xBB67AE85;
 | |
|         m_intermediate_hash[2] = 0x3C6EF372;
 | |
|         m_intermediate_hash[3] = 0xA54FF53A;
 | |
|         m_intermediate_hash[4] = 0x510E527F;
 | |
|         m_intermediate_hash[5] = 0x9B05688C;
 | |
|         m_intermediate_hash[6] = 0x1F83D9AB;
 | |
|         m_intermediate_hash[7] = 0x5BE0CD19;
 | |
| 
 | |
|         /* Set state. */
 | |
|         m_state = State_Initialized;
 | |
|     }
 | |
| 
 | |
|     void Sha256Impl::Update(const void *data, size_t size) {
 | |
|         /* Verify we're in a state to update. */
 | |
|         AMS_ASSERT(m_state == State_Initialized);
 | |
| 
 | |
|         /* Advance our input bit count. */
 | |
|         m_bits_consumed += BITSIZEOF(u8) * (((m_buffered_bytes + size) / BlockSize) * BlockSize);
 | |
| 
 | |
|         /* Process anything we have buffered. */
 | |
|         const u8 *data8 = static_cast<const u8 *>(data);
 | |
|         size_t remaining = size;
 | |
| 
 | |
|         if (m_buffered_bytes > 0) {
 | |
|             const size_t copy_size = std::min(BlockSize - m_buffered_bytes, remaining);
 | |
|             std::memcpy(m_buffer + m_buffered_bytes, data8, copy_size);
 | |
| 
 | |
|             data8            += copy_size;
 | |
|             remaining        -= copy_size;
 | |
|             m_buffered_bytes += copy_size;
 | |
| 
 | |
|             /* Process a block, if we filled one. */
 | |
|             if (m_buffered_bytes == BlockSize) {
 | |
|                 this->ProcessBlock(m_buffer);
 | |
|                 m_buffered_bytes = 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Process blocks, if we have any. */
 | |
|         while (remaining >= BlockSize) {
 | |
|             this->ProcessBlock(data8);
 | |
|             data8     += BlockSize;
 | |
|             remaining -= BlockSize;
 | |
|         }
 | |
| 
 | |
|         /* Copy any leftover data to our buffer. */
 | |
|         if (remaining > 0) {
 | |
|             m_buffered_bytes = remaining;
 | |
|             std::memcpy(m_buffer, data8, remaining);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void Sha256Impl::GetHash(void *dst, size_t size) {
 | |
|         /* Verify we're in a state to get hash. */
 | |
|         AMS_ASSERT(m_state == State_Initialized || m_state == State_Done);
 | |
|         AMS_ASSERT(size >= HashSize);
 | |
|         AMS_UNUSED(size);
 | |
| 
 | |
|         /* If we need to, process the last block. */
 | |
|         if (m_state == State_Initialized) {
 | |
|             this->ProcessLastBlock();
 | |
|             m_state = State_Done;
 | |
|         }
 | |
| 
 | |
|         /* Copy the output hash. */
 | |
|         if constexpr (util::IsLittleEndian()) {
 | |
|             static_assert(HashSize % sizeof(u32) == 0);
 | |
| 
 | |
|             u32 *dst_32 = static_cast<u32 *>(dst);
 | |
|             for (size_t i = 0; i < HashSize / sizeof(u32); ++i) {
 | |
|                 dst_32[i] = util::LoadBigEndian<u32>(m_intermediate_hash + i);
 | |
|             }
 | |
|         } else {
 | |
|             std::memcpy(dst, m_intermediate_hash, HashSize);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void Sha256Impl::InitializeWithContext(const Sha256Context *context) {
 | |
|         /* Copy state in from the context. */
 | |
|         std::memcpy(m_intermediate_hash, context->intermediate_hash, sizeof(m_intermediate_hash));
 | |
|         m_bits_consumed = context->bits_consumed;
 | |
| 
 | |
|         /* Reset other fields. */
 | |
|         m_buffered_bytes = 0;
 | |
|         m_state = State_Initialized;
 | |
|     }
 | |
| 
 | |
|     size_t Sha256Impl::GetContext(Sha256Context *context) const {
 | |
|         /* Check our state. */
 | |
|         AMS_ASSERT(m_state == State_Initialized);
 | |
| 
 | |
|         /* Copy out the context. */
 | |
|         std::memcpy(context->intermediate_hash, m_intermediate_hash, sizeof(context->intermediate_hash));
 | |
|         context->bits_consumed = m_bits_consumed;
 | |
| 
 | |
|         return m_buffered_bytes;
 | |
|     }
 | |
| 
 | |
|     void Sha256Impl::ProcessBlock(const void *data) {
 | |
|         /* Load work variables. */
 | |
|         u32 a = m_intermediate_hash[0];
 | |
|         u32 b = m_intermediate_hash[1];
 | |
|         u32 c = m_intermediate_hash[2];
 | |
|         u32 d = m_intermediate_hash[3];
 | |
|         u32 e = m_intermediate_hash[4];
 | |
|         u32 f = m_intermediate_hash[5];
 | |
|         u32 g = m_intermediate_hash[6];
 | |
|         u32 h = m_intermediate_hash[7];
 | |
|         u32 tmp[2];
 | |
|         size_t i;
 | |
| 
 | |
|         /* Copy the input. */
 | |
|         u32 w[64];
 | |
|         if constexpr (util::IsLittleEndian()) {
 | |
|             static_assert(BlockSize % sizeof(u32) == 0);
 | |
| 
 | |
|             const u32 *src_32 = static_cast<const u32 *>(data);
 | |
|             for (size_t i = 0; i < BlockSize / sizeof(u32); ++i) {
 | |
|                 w[i] = util::LoadBigEndian<u32>(src_32 + i);
 | |
|             }
 | |
|         } else {
 | |
|             std::memcpy(w, data, BlockSize);
 | |
|         }
 | |
| 
 | |
|         /* Initialize the rest of w. */
 | |
|         for (i = BlockSize / sizeof(u32); i < util::size(w); ++i) {
 | |
|             const u32 *prev = w + (i - BlockSize / sizeof(u32));
 | |
|             w[i] = prev[0] + SmallSigma0(prev[1]) + prev[9] + SmallSigma1(prev[14]);
 | |
|         }
 | |
| 
 | |
|         /* Perform rounds. */
 | |
|         for (i = 0; i < 64; ++i) {
 | |
|             tmp[0] = h + LargeSigma1(e) + Choose(e, f, g) + RoundConstants[i] + w[i];
 | |
|             tmp[1] = LargeSigma0(a) + Majority(a, b, c);
 | |
| 
 | |
|             h = g;
 | |
|             g = f;
 | |
|             f = e;
 | |
|             e = d + tmp[0];
 | |
|             d = c;
 | |
|             c = b;
 | |
|             b = a;
 | |
|             a = tmp[0] + tmp[1];
 | |
|         }
 | |
| 
 | |
|         /* Update intermediate hash. */
 | |
|         m_intermediate_hash[0] += a;
 | |
|         m_intermediate_hash[1] += b;
 | |
|         m_intermediate_hash[2] += c;
 | |
|         m_intermediate_hash[3] += d;
 | |
|         m_intermediate_hash[4] += e;
 | |
|         m_intermediate_hash[5] += f;
 | |
|         m_intermediate_hash[6] += g;
 | |
|         m_intermediate_hash[7] += h;
 | |
|     }
 | |
| 
 | |
|     void Sha256Impl::ProcessLastBlock() {
 | |
|         /* Setup the final block. */
 | |
|         constexpr const auto BlockSizeWithoutSizeField = BlockSize - sizeof(u64);
 | |
| 
 | |
|         /* Increment our bits consumed. */
 | |
|         m_bits_consumed += BITSIZEOF(u8) * m_buffered_bytes;
 | |
| 
 | |
|         /* Add 0x80 terminator. */
 | |
|         m_buffer[m_buffered_bytes++] = 0x80;
 | |
| 
 | |
|         /* If we can process the size field directly, do so, otherwise set up to process it. */
 | |
|         if (m_buffered_bytes <= BlockSizeWithoutSizeField) {
 | |
|             /* Clear up to size field. */
 | |
|             std::memset(m_buffer + m_buffered_bytes, 0, BlockSizeWithoutSizeField - m_buffered_bytes);
 | |
|         } else {
 | |
|             /* Consume full block */
 | |
|             std::memset(m_buffer + m_buffered_bytes, 0, BlockSize - m_buffered_bytes);
 | |
|             this->ProcessBlock(m_buffer);
 | |
| 
 | |
|             /* Clear up to size field. */
 | |
|             std::memset(m_buffer, 0, BlockSizeWithoutSizeField);
 | |
|         }
 | |
| 
 | |
|         /* Store the size field. */
 | |
|         util::StoreBigEndian<u64>(reinterpret_cast<u64 *>(m_buffer + BlockSizeWithoutSizeField), m_bits_consumed);
 | |
| 
 | |
|         /* Process the final block. */
 | |
|         this->ProcessBlock(m_buffer);
 | |
|     }
 | |
| 
 | |
| }
 |