mirror of
				https://github.com/Atmosphere-NX/Atmosphere.git
				synced 2025-10-31 03:05:48 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			418 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			418 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) Atmosphère-NX
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include <exosphere.hpp>
 | |
| #include "secmon_boot.hpp"
 | |
| #include "secmon_boot_cache.hpp"
 | |
| #include "../secmon_setup.hpp"
 | |
| #include "../secmon_key_storage.hpp"
 | |
| 
 | |
| namespace ams::secmon::boot {
 | |
| 
 | |
|     namespace {
 | |
| 
 | |
|         void ValidateSystemCounters() {
 | |
|             const uintptr_t sysctr0 = MemoryRegionVirtualDeviceSysCtr0.GetAddress();
 | |
| 
 | |
|             /* Validate the system counter frequency is as expected. */
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_CNTFID0) == 19'200'000u);
 | |
| 
 | |
|             /* Validate the system counters are as expected. */
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 0)) == 0);
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 1)) == 0);
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 2)) == 0);
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 3)) == 0);
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 4)) == 0);
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 5)) == 0);
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 6)) == 0);
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 7)) == 0);
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 8)) == 0);
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 9)) == 0);
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID(10)) == 0);
 | |
|             AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID(11)) == 0);
 | |
|         }
 | |
| 
 | |
|         void SetupPmcRegisters() {
 | |
|             const auto pmc = MemoryRegionVirtualDevicePmc.GetAddress();
 | |
| 
 | |
|             /* Set the physical address of the warmboot binary to scratch 1. */
 | |
|             if (GetSocType() == fuse::SocType_Mariko) {
 | |
|                 reg::Write(pmc + APBDEV_PMC_SECURE_SCRATCH119, static_cast<u32>(MemoryRegionPhysicalDramSecureDataStoreWarmbootFirmware.GetAddress()));
 | |
|             } else /* if (GetSocType() == fuse::SocType_Erista) */ {
 | |
|                 reg::Write(pmc + APBDEV_PMC_SCRATCH1, static_cast<u32>(MemoryRegionPhysicalDramSecureDataStoreWarmbootFirmware.GetAddress()));
 | |
|             }
 | |
| 
 | |
| 
 | |
|             /* Configure logging by setting bits 18-19 of scratch 20. */
 | |
|             reg::ReadWrite(pmc + APBDEV_PMC_SCRATCH20, REG_BITS_VALUE(18, 2, 0));
 | |
| 
 | |
|             /* Clear the wdt reset flag. */
 | |
|             reg::ReadWrite(pmc + APBDEV_PMC_SCRATCH190, REG_BITS_VALUE(0, 1, 0));
 | |
| 
 | |
|             /* Configure warmboot to set  Set FUSE_PRIVATEKEYDISABLE to KEY_INVISIBLE. */
 | |
|             reg::ReadWrite(pmc + APBDEV_PMC_SECURE_SCRATCH21, REG_BITS_VALUE(4, 1, 1));
 | |
| 
 | |
|             /* NOTE: Here, Nintendo writes the warmboot key. */
 | |
|             /* However, we rely on the bootloader (e.g. fusee/hekate) having already done this. */
 | |
|             /* reg::Write(pmc + APBDEV_PMC_SECURE_SCRATCH32, ...); */
 | |
|         }
 | |
| 
 | |
|         /* This function derives the master kek and device keys using the tsec root key. */
 | |
|         void DeriveMasterKekAndDeviceKeyErista(bool is_prod) {
 | |
|             /* NOTE: Exosphere does not use this in practice, and expects the bootloader to set up keys already. */
 | |
|             /* NOTE: This function is currently not implemented. If implemented, it will only be a reference implementation. */
 | |
|             if constexpr (false) {
 | |
|                 /* TODO: Consider implementing this as a reference. */
 | |
|             }
 | |
| 
 | |
|             AMS_UNUSED(is_prod);
 | |
|         }
 | |
| 
 | |
|         void DeriveMasterKekAndDeviceKeyMariko(bool is_prod) {
 | |
|             /* Clear all keyslots other than KEK and SBK in SE1. */
 | |
|             for (int i = 0; i < pkg1::AesKeySlot_Count; ++i) {
 | |
|                 if (i != pkg1::AesKeySlot_MarikoKek && i != pkg1::AesKeySlot_SecureBoot) {
 | |
|                     se::ClearAesKeySlot(i);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /* Clear all keyslots in SE2. */
 | |
|             for (int i = 0; i < pkg1::AesKeySlot_Count; ++i) {
 | |
|                 se::ClearAesKeySlot2(i);
 | |
|             }
 | |
| 
 | |
|             /* Derive the master kek. */
 | |
|             se::SetEncryptedAesKey128(pkg1::AesKeySlot_MasterKek, pkg1::AesKeySlot_MarikoKek, GetMarikoMasterKekSource(is_prod), se::AesBlockSize);
 | |
| 
 | |
|             /* Derive the device master key source kek. */
 | |
|             se::SetEncryptedAesKey128(pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko, pkg1::AesKeySlot_SecureBoot, GetDeviceMasterKeySourceKekSource(), se::AesBlockSize);
 | |
| 
 | |
|             /* Clear the KEK, now that we're done using it. */
 | |
|             se::ClearAesKeySlot(pkg1::AesKeySlot_MarikoKek);
 | |
|         }
 | |
| 
 | |
|         void DeriveMasterKekAndDeviceKey(bool is_prod) {
 | |
|             if (GetSocType() == fuse::SocType_Mariko) {
 | |
|                 DeriveMasterKekAndDeviceKeyMariko(is_prod);
 | |
|             } else /* if (GetSocType() == fuse::SocType_Erista) */ {
 | |
|                 DeriveMasterKekAndDeviceKeyErista(is_prod);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         void DeriveMasterKey() {
 | |
|             if (GetSocType() == fuse::SocType_Mariko) {
 | |
|                 se::SetEncryptedAesKey128(pkg1::AesKeySlot_Master, pkg1::AesKeySlot_MasterKek, GetMasterKeySource(), se::AesBlockSize);
 | |
|             } else /* if (GetSocType() == fuse::SocType_Erista) */ {
 | |
|                 /* Nothing to do here; erista bootloader will have derived master key already. */
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         void SetupRandomKey(int slot, se::KeySlotLockFlags flags) {
 | |
|             /* Create an aligned buffer to hold the key. */
 | |
|             constexpr size_t KeySize = se::AesBlockSize;
 | |
|             util::AlignedBuffer<hw::DataCacheLineSize, KeySize> key;
 | |
| 
 | |
|             /* Ensure data is consistent before triggering the SE. */
 | |
|             hw::FlushDataCache(key, KeySize);
 | |
|             hw::DataSynchronizationBarrierInnerShareable();
 | |
| 
 | |
|             /* Generate random bytes into the key. */
 | |
|             se::GenerateRandomBytes(key, KeySize);
 | |
| 
 | |
|             /* Ensure that the CPU sees consistent data. */
 | |
|             hw::DataSynchronizationBarrierInnerShareable();
 | |
|             hw::FlushDataCache(key, KeySize);
 | |
|             hw::DataSynchronizationBarrierInnerShareable();
 | |
| 
 | |
|             /* Use the random bytes as a key source. */
 | |
|             se::SetEncryptedAesKey128(slot, pkg1::AesKeySlot_DeviceMaster, key, KeySize);
 | |
| 
 | |
|             /* Lock the keyslot. */
 | |
|             se::LockAesKeySlot(slot, flags);
 | |
|         }
 | |
| 
 | |
|         bool TestKeyGeneration(int generation, bool is_prod) {
 | |
|             /* Decrypt the vector chain from generation to start. */
 | |
|             int slot = pkg1::AesKeySlot_Master;
 | |
|             for (int i = generation; i > 0; --i) {
 | |
|                 se::SetEncryptedAesKey128(pkg1::AesKeySlot_Temporary, slot, GetMasterKeyVector(is_prod, i), se::AesBlockSize);
 | |
|                 slot = pkg1::AesKeySlot_Temporary;
 | |
|             }
 | |
| 
 | |
|             /* Decrypt the final vector. */
 | |
|             u8 test_vector[se::AesBlockSize];
 | |
|             se::DecryptAes128(test_vector, se::AesBlockSize, slot, GetMasterKeyVector(is_prod, 0), se::AesBlockSize);
 | |
| 
 | |
|             constexpr u8 ZeroBlock[se::AesBlockSize] = {};
 | |
|             return crypto::IsSameBytes(ZeroBlock, test_vector, se::AesBlockSize);
 | |
|         }
 | |
| 
 | |
|         int DetermineKeyGeneration(bool is_prod) {
 | |
|             /* Test each generation in order. */
 | |
|             for (int generation = 0; generation < pkg1::KeyGeneration_Count; ++generation) {
 | |
|                 if (TestKeyGeneration(generation, is_prod)) {
 | |
|                     return generation;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /* We must have found a correct key generation. */
 | |
|             AMS_ABORT();
 | |
|         }
 | |
| 
 | |
|         void DeriveAllMasterKeys(bool is_prod, u8 * const work_block) {
 | |
|             /* Determine the generation. */
 | |
|             const int generation = DetermineKeyGeneration(is_prod);
 | |
|             AMS_SECMON_LOG("KeyGen: %02X\n", static_cast<unsigned int>(generation));
 | |
| 
 | |
|             /* Set the global generation. */
 | |
|             ::ams::secmon::impl::SetKeyGeneration(generation);
 | |
| 
 | |
|             /* Derive all old keys. */
 | |
|             int slot = pkg1::AesKeySlot_Master;
 | |
|             for (int i = generation; i > 0; --i) {
 | |
|                 /* Decrypt the old master key. */
 | |
|                 se::DecryptAes128(work_block, se::AesBlockSize, slot, GetMasterKeyVector(is_prod, i), se::AesBlockSize);
 | |
| 
 | |
|                 /* Set the old master key. */
 | |
|                 SetMasterKey(i - 1, work_block, se::AesBlockSize);
 | |
| 
 | |
|                 /* Set the old master key into a temporary keyslot. */
 | |
|                 se::SetAesKey(pkg1::AesKeySlot_Temporary, work_block, se::AesBlockSize);
 | |
| 
 | |
|                 /* Perform the next decryption with the older master key. */
 | |
|                 slot = pkg1::AesKeySlot_Temporary;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         void DeriveAllDeviceMasterKeys(bool is_prod, u8 * const work_block) {
 | |
|             /* Get the current key generation. */
 | |
|             const int current_generation = secmon::GetKeyGeneration();
 | |
| 
 | |
|             /* Get the kek slot. */
 | |
|             const int kek_slot = GetSocType() == fuse::SocType_Mariko ? pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko : pkg1::AesKeySlot_DeviceMasterKeySourceKekErista;
 | |
| 
 | |
|             /* Iterate for all generations. */
 | |
|             for (int i = 0; i < pkg1::OldDeviceMasterKeyCount; ++i) {
 | |
|                 const int generation = pkg1::KeyGeneration_4_0_0 + i;
 | |
| 
 | |
|                 /* Load the first master key into the temporary keyslot keyslot. */
 | |
|                 LoadMasterKey(pkg1::AesKeySlot_Temporary, pkg1::KeyGeneration_1_0_0);
 | |
| 
 | |
|                 /* Decrypt the device master kek for the generation. */
 | |
|                 se::SetEncryptedAesKey128(pkg1::AesKeySlot_Temporary, pkg1::AesKeySlot_Temporary, GetDeviceMasterKekSource(is_prod, i), se::AesBlockSize);
 | |
| 
 | |
|                 /* Decrypt the device master key source into the work block. */
 | |
|                 se::DecryptAes128(work_block, se::AesBlockSize, kek_slot, GetDeviceMasterKeySourceSource(i), se::AesBlockSize);
 | |
| 
 | |
|                 /* If we're decrypting the current device master key, decrypt into the keyslot. */
 | |
|                 if (generation == current_generation) {
 | |
|                     se::SetEncryptedAesKey128(pkg1::AesKeySlot_DeviceMaster, pkg1::AesKeySlot_Temporary, work_block, se::AesBlockSize);
 | |
|                 } else {
 | |
|                     /* Otherwise, decrypt the work block into itself and set the old device master key. */
 | |
|                     se::DecryptAes128(work_block, se::AesBlockSize, pkg1::AesKeySlot_Temporary, work_block, se::AesBlockSize);
 | |
| 
 | |
|                     /* Set the device master key. */
 | |
|                     SetDeviceMasterKey(generation, work_block, se::AesBlockSize);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /* Clear and lock the Device Master Key Source Kek. */
 | |
|             se::ClearAesKeySlot(pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko);
 | |
|             se::LockAesKeySlot(pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko, se::KeySlotLockFlags_AllLockKek);
 | |
|         }
 | |
| 
 | |
|         void DeriveAllKeys(bool is_prod) {
 | |
|             /* Get the ephemeral work block. */
 | |
|             u8 * const work_block = se::GetEphemeralWorkBlock();
 | |
|             ON_SCOPE_EXIT { util::ClearMemory(work_block, se::AesBlockSize); };
 | |
| 
 | |
|             /* Lock the master key as a key. */
 | |
|             se::LockAesKeySlot(pkg1::AesKeySlot_Master, se::KeySlotLockFlags_AllLockKey);
 | |
| 
 | |
|             /* Setup a random key to protect the old master and device master keys. */
 | |
|             SetupRandomKey(pkg1::AesKeySlot_RandomForKeyStorageWrap, se::KeySlotLockFlags_AllLockKey);
 | |
| 
 | |
|             /* Derive the master keys. */
 | |
|             DeriveAllMasterKeys(is_prod, work_block);
 | |
| 
 | |
|             /* Lock the master key as a kek. */
 | |
|             se::LockAesKeySlot(pkg1::AesKeySlot_Master, se::KeySlotLockFlags_AllLockKek);
 | |
| 
 | |
|             /* Derive the device master keys. */
 | |
|             DeriveAllDeviceMasterKeys(is_prod, work_block);
 | |
| 
 | |
|             /* Lock the device master key as a kek. */
 | |
|             se::LockAesKeySlot(pkg1::AesKeySlot_DeviceMaster, se::KeySlotLockFlags_AllLockKek);
 | |
| 
 | |
|             /* Setup a random key to protect user keys. */
 | |
|             SetupRandomKey(pkg1::AesKeySlot_RandomForUserWrap, se::KeySlotLockFlags_AllLockKek);
 | |
|         }
 | |
| 
 | |
|         void InitializeKeys() {
 | |
|             /* Read lock all aes keys. */
 | |
|             for (int i = 0; i < se::AesKeySlotCount; ++i) {
 | |
|                 se::LockAesKeySlot(i, se::KeySlotLockFlags_AllReadLock);
 | |
|             }
 | |
| 
 | |
|             /* Lock the secure monitor aes keys to be secmon only and non-readable. */
 | |
|             for (int i = pkg1::AesKeySlot_SecmonStart; i < pkg1::AesKeySlot_SecmonEnd; ++i) {
 | |
|                 se::LockAesKeySlot(i, se::KeySlotLockFlags_KeyUse | se::KeySlotLockFlags_PerKey);
 | |
|             }
 | |
| 
 | |
|             /* Lock the unused keyslots entirely. */
 | |
|             static_assert(pkg1::AesKeySlot_UserEnd <= pkg1::AesKeySlot_SecmonStart);
 | |
|             for (int i = pkg1::AesKeySlot_UserEnd; i < pkg1::AesKeySlot_SecmonStart; ++i) {
 | |
|                 se::LockAesKeySlot(i, se::KeySlotLockFlags_AllLockKek);
 | |
|             }
 | |
| 
 | |
|             /* Read lock all rsa keys. */
 | |
|             for (int i = 0;  i < se::RsaKeySlotCount; ++i) {
 | |
|                 se::LockRsaKeySlot(i, se::KeySlotLockFlags_KeyUse | se::KeySlotLockFlags_PerKey | se::KeySlotLockFlags_KeyRead);
 | |
|             }
 | |
| 
 | |
|             /* Initialize the rng. */
 | |
|             se::InitializeRandom();
 | |
| 
 | |
|             /* Determine whether we're production. */
 | |
|             const bool is_prod = IsProduction();
 | |
| 
 | |
|             /* Derive the master kek and device key. */
 | |
|             /* NOTE: This is a no-op on erista, because fusee will have set up keys. */
 | |
|             DeriveMasterKekAndDeviceKey(is_prod);
 | |
| 
 | |
|             /* Lock the device key as only usable as a kek. */
 | |
|             se::LockAesKeySlot(pkg1::AesKeySlot_Device, se::KeySlotLockFlags_AllLockKek);
 | |
| 
 | |
|             /* Derive the master key. */
 | |
|             DeriveMasterKey();
 | |
| 
 | |
|             /* Derive all other keys. */
 | |
|             DeriveAllKeys(is_prod);
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     namespace {
 | |
| 
 | |
|         using namespace ams::mmu;
 | |
| 
 | |
|         constexpr void UnmapPhysicalIdentityMappingImpl(u64 *l1, u64 *l2, u64 *l3) {
 | |
|             /* Invalidate the L3 entries for the tzram and iram boot code regions. */
 | |
|             InvalidateL3Entries(l3, MemoryRegionPhysicalTzram.GetAddress(),        MemoryRegionPhysicalTzram.GetSize());
 | |
|             InvalidateL3Entries(l3, MemoryRegionPhysicalIramBootCode.GetAddress(), MemoryRegionPhysicalIramBootCode.GetSize());
 | |
| 
 | |
|             /* Unmap the L2 entries corresponding to those L3 entries. */
 | |
|             InvalidateL2Entries(l2, MemoryRegionPhysicalIramL2.GetAddress(),  MemoryRegionPhysicalIramL2.GetSize());
 | |
|             InvalidateL2Entries(l2, MemoryRegionPhysicalTzramL2.GetAddress(), MemoryRegionPhysicalTzramL2.GetSize());
 | |
| 
 | |
|             /* Unmap the L1 entry corresponding to to those L2 entries. */
 | |
|             InvalidateL1Entries(l1, MemoryRegionPhysical.GetAddress(), MemoryRegionPhysical.GetSize());
 | |
|         }
 | |
| 
 | |
|         constexpr void UnmapDramImpl(u64 *l1, u64 *l2, u64 *l3) {
 | |
|             /* Unmap the L1 entry corresponding to to the Dram entries. */
 | |
|             AMS_UNUSED(l2, l3);
 | |
|             InvalidateL1Entries(l1, MemoryRegionDram.GetAddress(), MemoryRegionDram.GetSize());
 | |
|         }
 | |
| 
 | |
|         constexpr void UnmapMarikoProgramImpl(u64 *l1, u64 *l2, u64 *l3) {
 | |
|             /* Unmap the L1 entry corresponding to to the Dram entries. */
 | |
|             AMS_UNUSED(l1, l2);
 | |
|             InvalidateL3Entries(l3, MemoryRegionVirtualTzramMarikoProgram.GetAddress(), MemoryRegionVirtualTzramMarikoProgram.GetSize());
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     void InitializeColdBoot() {
 | |
|         /* Ensure that the system counters are valid. */
 | |
|         ValidateSystemCounters();
 | |
| 
 | |
|         /* Set the security engine to Tzram Secure. */
 | |
|         se::SetTzramSecure();
 | |
| 
 | |
|         /* Set the security engine to Per Key Secure. */
 | |
|         se::SetPerKeySecure();
 | |
| 
 | |
|         /* Set the security engine to Context Save Secure. */
 | |
|         se::SetContextSaveSecure();
 | |
| 
 | |
|         /* Setup the PMC registers. */
 | |
|         SetupPmcRegisters();
 | |
| 
 | |
|         /* Lockout the scratch that we've just written. */
 | |
|         /* pmc::LockSecureRegisters(1); */
 | |
| 
 | |
|         /* Generate a random srk. */
 | |
|         se::GenerateSrk();
 | |
| 
 | |
|         /* Initialize the SE keyslots. */
 | |
|         InitializeKeys();
 | |
| 
 | |
|         /* Save a test vector for the SE keyslots. */
 | |
|         SaveSecurityEngineAesKeySlotTestVector();
 | |
|     }
 | |
| 
 | |
|     void UnmapPhysicalIdentityMapping() {
 | |
|         /* Get the tables. */
 | |
|         u64 * const l1    = MemoryRegionVirtualTzramL1PageTable.GetPointer<u64>();
 | |
|         u64 * const l2_l3 = MemoryRegionVirtualTzramL2L3PageTable.GetPointer<u64>();
 | |
| 
 | |
|         /* Unmap. */
 | |
|         UnmapPhysicalIdentityMappingImpl(l1, l2_l3, l2_l3);
 | |
| 
 | |
|         /* Ensure the mappings are consistent. */
 | |
|         secmon::boot::EnsureMappingConsistency();
 | |
|     }
 | |
| 
 | |
|     void UnmapDram() {
 | |
|         /* Get the tables. */
 | |
|         u64 * const l1    = MemoryRegionVirtualTzramL1PageTable.GetPointer<u64>();
 | |
|         u64 * const l2_l3 = MemoryRegionVirtualTzramL2L3PageTable.GetPointer<u64>();
 | |
| 
 | |
|         /* Unmap. */
 | |
|         UnmapDramImpl(l1, l2_l3, l2_l3);
 | |
| 
 | |
|         /* Ensure the mappings are consistent. */
 | |
|         secmon::boot::EnsureMappingConsistency();
 | |
|     }
 | |
| 
 | |
|     void LoadMarikoProgram() {
 | |
|         void * const mariko_program_dst  = MemoryRegionVirtualTzramMarikoProgram.GetPointer<void>();
 | |
|         void * const mariko_program_src  = MemoryRegionPhysicalMarikoProgramImage.GetPointer<void>();
 | |
|         const size_t mariko_program_size = MemoryRegionVirtualTzramMarikoProgram.GetSize();
 | |
| 
 | |
|         if (fuse::GetSocType() == fuse::SocType_Mariko) {
 | |
|             /* On Mariko, we want to load the mariko program image into mariko tzram. */
 | |
|             std::memcpy(mariko_program_dst, mariko_program_src, mariko_program_size);
 | |
|             hw::FlushDataCache(mariko_program_dst, mariko_program_size);
 | |
|         } else {
 | |
|             /* On Erista, we don't have mariko-only-tzram, so unmap it. */
 | |
|             u64 * const l1    = MemoryRegionVirtualTzramL1PageTable.GetPointer<u64>();
 | |
|             u64 * const l2_l3 = MemoryRegionVirtualTzramL2L3PageTable.GetPointer<u64>();
 | |
| 
 | |
|             UnmapMarikoProgramImpl(l1, l2_l3, l2_l3);
 | |
|         }
 | |
| 
 | |
|         /* Clear the Mariko program image from DRAM. */
 | |
|         util::ClearMemory(mariko_program_src, mariko_program_size);
 | |
|         hw::FlushDataCache(mariko_program_src, mariko_program_size);
 | |
|         hw::DataSynchronizationBarrierInnerShareable();
 | |
| 
 | |
|         /* Ensure the mappings are consistent. */
 | |
|         secmon::boot::EnsureMappingConsistency();
 | |
|     }
 | |
| 
 | |
| }
 |