/*
 * Copyright (c) 2018-2019 Atmosphère-NX
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#include <sys/stat.h>
#include "dmnt_cheat_vm.hpp"
#include "dmnt_cheat_api.hpp"

namespace ams::dmnt::cheat::impl {

    void CheatVirtualMachine::DebugLog(u32 log_id, u64 value) {
        /* Just unconditionally try to create the log folder. */
        mkdir("/atmosphere/cheat_vm_logs", 0777);
        FILE *f_log = NULL;
        {
            char log_path[FS_MAX_PATH];
            snprintf(log_path, sizeof(log_path), "/atmosphere/cheat_vm_logs/%x.log", log_id);
            f_log = fopen(log_path, "ab");
        }
        if (f_log != NULL) {
            ON_SCOPE_EXIT { fclose(f_log); };
            fprintf(f_log, "%016lx\n", value);
        }
    }

    void CheatVirtualMachine::OpenDebugLogFile() {
        #ifdef DMNT_CHEAT_VM_DEBUG_LOG
        CloseDebugLogFile();
        this->debug_log_file = fopen("cheat_vm_log.txt", "ab");
        #endif
    }

    void CheatVirtualMachine::CloseDebugLogFile() {
        #ifdef DMNT_CHEAT_VM_DEBUG_LOG
        if (this->debug_log_file != NULL) {
            fclose(this->debug_log_file);
            this->debug_log_file = NULL;
        }
        #endif
    }

    void CheatVirtualMachine::LogToDebugFile(const char *format, ...) {
        #ifdef DMNT_CHEAT_VM_DEBUG_LOG
        if (this->debug_log_file != NULL) {
            va_list arglist;
            va_start(arglist, format);
            vfprintf(this->debug_log_file, format, arglist);
            va_end(arglist);
        }
        #endif
    }

    void CheatVirtualMachine::LogOpcode(const CheatVmOpcode *opcode) {
        #ifndef DMNT_CHEAT_VM_DEBUG_LOG
            return;
        #endif
        switch (opcode->opcode) {
            case CheatVmOpcodeType_StoreStatic:
                this->LogToDebugFile("Opcode: Store Static\n");
                this->LogToDebugFile("Bit Width: %x\n", opcode->store_static.bit_width);
                this->LogToDebugFile("Mem Type:  %x\n", opcode->store_static.mem_type);
                this->LogToDebugFile("Reg Idx:   %x\n", opcode->store_static.offset_register);
                this->LogToDebugFile("Rel Addr:  %lx\n", opcode->store_static.rel_address);
                this->LogToDebugFile("Value:     %lx\n", opcode->store_static.value.bit64);
                break;
            case CheatVmOpcodeType_BeginConditionalBlock:
                this->LogToDebugFile("Opcode: Begin Conditional\n");
                this->LogToDebugFile("Bit Width: %x\n", opcode->begin_cond.bit_width);
                this->LogToDebugFile("Mem Type:  %x\n", opcode->begin_cond.mem_type);
                this->LogToDebugFile("Cond Type: %x\n", opcode->begin_cond.cond_type);
                this->LogToDebugFile("Rel Addr:  %lx\n", opcode->begin_cond.rel_address);
                this->LogToDebugFile("Value:     %lx\n", opcode->begin_cond.value.bit64);
                break;
            case CheatVmOpcodeType_EndConditionalBlock:
                this->LogToDebugFile("Opcode: End Conditional\n");
                break;
            case CheatVmOpcodeType_ControlLoop:
                if (opcode->ctrl_loop.start_loop) {
                    this->LogToDebugFile("Opcode: Start Loop\n");
                    this->LogToDebugFile("Reg Idx:   %x\n", opcode->ctrl_loop.reg_index);
                    this->LogToDebugFile("Num Iters: %x\n", opcode->ctrl_loop.num_iters);
                } else {
                    this->LogToDebugFile("Opcode: End Loop\n");
                    this->LogToDebugFile("Reg Idx:   %x\n", opcode->ctrl_loop.reg_index);
                }
                break;
            case CheatVmOpcodeType_LoadRegisterStatic:
                this->LogToDebugFile("Opcode: Load Register Static\n");
                this->LogToDebugFile("Reg Idx:   %x\n", opcode->ldr_static.reg_index);
                this->LogToDebugFile("Value:     %lx\n", opcode->ldr_static.value);
                break;
            case CheatVmOpcodeType_LoadRegisterMemory:
                this->LogToDebugFile("Opcode: Load Register Memory\n");
                this->LogToDebugFile("Bit Width: %x\n", opcode->ldr_memory.bit_width);
                this->LogToDebugFile("Reg Idx:   %x\n", opcode->ldr_memory.reg_index);
                this->LogToDebugFile("Mem Type:  %x\n", opcode->ldr_memory.mem_type);
                this->LogToDebugFile("From Reg:  %d\n", opcode->ldr_memory.load_from_reg);
                this->LogToDebugFile("Rel Addr:  %lx\n", opcode->ldr_memory.rel_address);
                break;
            case CheatVmOpcodeType_StoreStaticToAddress:
                this->LogToDebugFile("Opcode: Store Static to Address\n");
                this->LogToDebugFile("Bit Width: %x\n", opcode->str_static.bit_width);
                this->LogToDebugFile("Reg Idx:   %x\n", opcode->str_static.reg_index);
                if (opcode->str_static.add_offset_reg) {
                    this->LogToDebugFile("O Reg Idx: %x\n", opcode->str_static.offset_reg_index);
                }
                this->LogToDebugFile("Incr Reg:  %d\n", opcode->str_static.increment_reg);
                this->LogToDebugFile("Value:     %lx\n", opcode->str_static.value);
                break;
            case CheatVmOpcodeType_PerformArithmeticStatic:
                this->LogToDebugFile("Opcode: Perform Static Arithmetic\n");
                this->LogToDebugFile("Bit Width: %x\n", opcode->perform_math_static.bit_width);
                this->LogToDebugFile("Reg Idx:   %x\n", opcode->perform_math_static.reg_index);
                this->LogToDebugFile("Math Type: %x\n", opcode->perform_math_static.math_type);
                this->LogToDebugFile("Value:     %lx\n", opcode->perform_math_static.value);
                break;
            case CheatVmOpcodeType_BeginKeypressConditionalBlock:
                this->LogToDebugFile("Opcode: Begin Keypress Conditional\n");
                this->LogToDebugFile("Key Mask:  %x\n", opcode->begin_keypress_cond.key_mask);
                break;
            case CheatVmOpcodeType_PerformArithmeticRegister:
                this->LogToDebugFile("Opcode: Perform Register Arithmetic\n");
                this->LogToDebugFile("Bit Width: %x\n", opcode->perform_math_reg.bit_width);
                this->LogToDebugFile("Dst Idx:   %x\n", opcode->perform_math_reg.dst_reg_index);
                this->LogToDebugFile("Src1 Idx:  %x\n", opcode->perform_math_reg.src_reg_1_index);
                if (opcode->perform_math_reg.has_immediate) {
                    this->LogToDebugFile("Value:     %lx\n", opcode->perform_math_reg.value.bit64);
                } else {
                    this->LogToDebugFile("Src2 Idx:  %x\n", opcode->perform_math_reg.src_reg_2_index);
                }
                break;
            case CheatVmOpcodeType_StoreRegisterToAddress:
                this->LogToDebugFile("Opcode: Store Register to Address\n");
                this->LogToDebugFile("Bit Width: %x\n", opcode->str_register.bit_width);
                this->LogToDebugFile("S Reg Idx: %x\n", opcode->str_register.str_reg_index);
                this->LogToDebugFile("A Reg Idx: %x\n", opcode->str_register.addr_reg_index);
                this->LogToDebugFile("Incr Reg:  %d\n", opcode->str_register.increment_reg);
                switch (opcode->str_register.ofs_type) {
                    case StoreRegisterOffsetType_None:
                        break;
                    case StoreRegisterOffsetType_Reg:
                        this->LogToDebugFile("O Reg Idx: %x\n", opcode->str_register.ofs_reg_index);
                        break;
                    case StoreRegisterOffsetType_Imm:
                        this->LogToDebugFile("Rel Addr:  %lx\n", opcode->str_register.rel_address);
                        break;
                    case StoreRegisterOffsetType_MemReg:
                        this->LogToDebugFile("Mem Type:  %x\n", opcode->str_register.mem_type);
                        break;
                    case StoreRegisterOffsetType_MemImm:
                    case StoreRegisterOffsetType_MemImmReg:
                        this->LogToDebugFile("Mem Type:  %x\n", opcode->str_register.mem_type);
                        this->LogToDebugFile("Rel Addr:  %lx\n", opcode->str_register.rel_address);
                        break;
                }
                break;
            case CheatVmOpcodeType_BeginRegisterConditionalBlock:
                this->LogToDebugFile("Opcode: Begin Register Conditional\n");
                this->LogToDebugFile("Bit Width: %x\n", opcode->begin_reg_cond.bit_width);
                this->LogToDebugFile("Cond Type: %x\n", opcode->begin_reg_cond.cond_type);
                this->LogToDebugFile("V Reg Idx: %x\n", opcode->begin_reg_cond.val_reg_index);
                switch (opcode->begin_reg_cond.comp_type) {
                    case CompareRegisterValueType_StaticValue:
                        this->LogToDebugFile("Comp Type: Static Value\n");
                        this->LogToDebugFile("Value:     %lx\n", opcode->begin_reg_cond.value.bit64);
                        break;
                    case CompareRegisterValueType_OtherRegister:
                        this->LogToDebugFile("Comp Type: Other Register\n");
                        this->LogToDebugFile("X Reg Idx: %x\n", opcode->begin_reg_cond.other_reg_index);
                        break;
                    case CompareRegisterValueType_MemoryRelAddr:
                        this->LogToDebugFile("Comp Type: Memory Relative Address\n");
                        this->LogToDebugFile("Mem Type:  %x\n", opcode->begin_reg_cond.mem_type);
                        this->LogToDebugFile("Rel Addr:  %lx\n", opcode->begin_reg_cond.rel_address);
                        break;
                    case CompareRegisterValueType_MemoryOfsReg:
                        this->LogToDebugFile("Comp Type: Memory Offset Register\n");
                        this->LogToDebugFile("Mem Type:  %x\n", opcode->begin_reg_cond.mem_type);
                        this->LogToDebugFile("O Reg Idx: %x\n", opcode->begin_reg_cond.ofs_reg_index);
                        break;
                    case CompareRegisterValueType_RegisterRelAddr:
                        this->LogToDebugFile("Comp Type: Register Relative Address\n");
                        this->LogToDebugFile("A Reg Idx: %x\n", opcode->begin_reg_cond.addr_reg_index);
                        this->LogToDebugFile("Rel Addr:  %lx\n", opcode->begin_reg_cond.rel_address);
                        break;
                    case CompareRegisterValueType_RegisterOfsReg:
                        this->LogToDebugFile("Comp Type: Register Offset Register\n");
                        this->LogToDebugFile("A Reg Idx: %x\n", opcode->begin_reg_cond.addr_reg_index);
                        this->LogToDebugFile("O Reg Idx: %x\n", opcode->begin_reg_cond.ofs_reg_index);
                        break;
                }
                break;
            case CheatVmOpcodeType_SaveRestoreRegister:
                this->LogToDebugFile("Opcode: Save or Restore Register\n");
                this->LogToDebugFile("Dst Idx:   %x\n", opcode->save_restore_reg.dst_index);
                this->LogToDebugFile("Src Idx:   %x\n", opcode->save_restore_reg.src_index);
                this->LogToDebugFile("Op Type:   %d\n", opcode->save_restore_reg.op_type);
                break;
            case CheatVmOpcodeType_SaveRestoreRegisterMask:
                this->LogToDebugFile("Opcode: Save or Restore Register Mask\n");
                this->LogToDebugFile("Op Type:   %d\n", opcode->save_restore_regmask.op_type);
                for (size_t i = 0; i < NumRegisters; i++) {
                    this->LogToDebugFile("Act[%02x]:   %d\n", i, opcode->save_restore_regmask.should_operate[i]);
                }
                break;
            case CheatVmOpcodeType_DebugLog:
                this->LogToDebugFile("Opcode: Debug Log\n");
                this->LogToDebugFile("Bit Width: %x\n", opcode->debug_log.bit_width);
                this->LogToDebugFile("Log ID:    %x\n", opcode->debug_log.log_id);
                this->LogToDebugFile("Val Type:  %x\n", opcode->debug_log.val_type);
                switch (opcode->debug_log.val_type) {
                    case DebugLogValueType_RegisterValue:
                        this->LogToDebugFile("Val Type:  Register Value\n");
                        this->LogToDebugFile("X Reg Idx: %x\n", opcode->debug_log.val_reg_index);
                        break;
                    case DebugLogValueType_MemoryRelAddr:
                        this->LogToDebugFile("Val Type:  Memory Relative Address\n");
                        this->LogToDebugFile("Mem Type:  %x\n", opcode->debug_log.mem_type);
                        this->LogToDebugFile("Rel Addr:  %lx\n", opcode->debug_log.rel_address);
                        break;
                    case DebugLogValueType_MemoryOfsReg:
                        this->LogToDebugFile("Val Type:  Memory Offset Register\n");
                        this->LogToDebugFile("Mem Type:  %x\n", opcode->debug_log.mem_type);
                        this->LogToDebugFile("O Reg Idx: %x\n", opcode->debug_log.ofs_reg_index);
                        break;
                    case DebugLogValueType_RegisterRelAddr:
                        this->LogToDebugFile("Val Type:  Register Relative Address\n");
                        this->LogToDebugFile("A Reg Idx: %x\n", opcode->debug_log.addr_reg_index);
                        this->LogToDebugFile("Rel Addr:  %lx\n", opcode->debug_log.rel_address);
                        break;
                    case DebugLogValueType_RegisterOfsReg:
                        this->LogToDebugFile("Val Type:  Register Offset Register\n");
                        this->LogToDebugFile("A Reg Idx: %x\n", opcode->debug_log.addr_reg_index);
                        this->LogToDebugFile("O Reg Idx: %x\n", opcode->debug_log.ofs_reg_index);
                        break;
                }
            default:
                this->LogToDebugFile("Unknown opcode: %x\n", opcode->opcode);
                break;
        }
    }

    bool CheatVirtualMachine::DecodeNextOpcode(CheatVmOpcode *out) {
        /* If we've ever seen a decode failure, return false. */
        bool valid = this->decode_success;
        CheatVmOpcode opcode = {};
        ON_SCOPE_EXIT {
            this->decode_success &= valid;
            if (valid) {
                *out = opcode;
            }
        };

        /* Helper function for getting instruction dwords. */
        auto GetNextDword = [&]() {
            if (this->instruction_ptr >= this->num_opcodes) {
                valid = false;
                return static_cast<u32>(0);
            }
            return this->program[this->instruction_ptr++];
        };

        /* Helper function for parsing a VmInt. */
        auto GetNextVmInt = [&](const u32 bit_width) {
            VmInt val = {0};

            const u32 first_dword = GetNextDword();
            switch (bit_width) {
                case 1:
                    val.bit8 = (u8)first_dword;
                    break;
                case 2:
                    val.bit16 = (u16)first_dword;
                    break;
                case 4:
                    val.bit32 = first_dword;
                    break;
                case 8:
                    val.bit64 = (((u64)first_dword) << 32ul) | ((u64)GetNextDword());
                    break;
            }

            return val;
        };

        /* Read opcode. */
        const u32 first_dword = GetNextDword();
        if (!valid) {
            return valid;
        }

        opcode.opcode = (CheatVmOpcodeType)(((first_dword >> 28) & 0xF));
        if (opcode.opcode >= CheatVmOpcodeType_ExtendedWidth) {
            opcode.opcode = (CheatVmOpcodeType)((((u32)opcode.opcode) << 4) | ((first_dword >> 24) & 0xF));
        }
        if (opcode.opcode >= CheatVmOpcodeType_DoubleExtendedWidth) {
            opcode.opcode = (CheatVmOpcodeType)((((u32)opcode.opcode) << 4) | ((first_dword >> 20) & 0xF));
        }

        /* detect condition start. */
        switch (opcode.opcode) {
            case CheatVmOpcodeType_BeginConditionalBlock:
            case CheatVmOpcodeType_BeginKeypressConditionalBlock:
            case CheatVmOpcodeType_BeginRegisterConditionalBlock:
                opcode.begin_conditional_block = true;
                break;
            default:
                opcode.begin_conditional_block = false;
                break;
        }

        switch (opcode.opcode) {
            case CheatVmOpcodeType_StoreStatic:
                {
                    /* 0TMR00AA AAAAAAAA YYYYYYYY (YYYYYYYY) */
                    /* Read additional words. */
                    const u32 second_dword = GetNextDword();
                    opcode.store_static.bit_width = (first_dword >> 24) & 0xF;
                    opcode.store_static.mem_type = (MemoryAccessType)((first_dword >> 20) & 0xF);
                    opcode.store_static.offset_register = ((first_dword >> 16) & 0xF);
                    opcode.store_static.rel_address = ((u64)(first_dword & 0xFF) << 32ul) | ((u64)second_dword);
                    opcode.store_static.value = GetNextVmInt(opcode.store_static.bit_width);
                }
                break;
            case CheatVmOpcodeType_BeginConditionalBlock:
                {
                    /* 1TMC00AA AAAAAAAA YYYYYYYY (YYYYYYYY) */
                    /* Read additional words. */
                    const u32 second_dword = GetNextDword();
                    opcode.begin_cond.bit_width = (first_dword >> 24) & 0xF;
                    opcode.begin_cond.mem_type = (MemoryAccessType)((first_dword >> 20) & 0xF);
                    opcode.begin_cond.cond_type = (ConditionalComparisonType)((first_dword >> 16) & 0xF);
                    opcode.begin_cond.rel_address = ((u64)(first_dword & 0xFF) << 32ul) | ((u64)second_dword);
                    opcode.begin_cond.value = GetNextVmInt(opcode.store_static.bit_width);
                }
                break;
            case CheatVmOpcodeType_EndConditionalBlock:
                {
                    /* 20000000 */
                    /* There's actually nothing left to process here! */
                }
                break;
            case CheatVmOpcodeType_ControlLoop:
                {
                    /* 300R0000 VVVVVVVV */
                    /* 310R0000 */
                    /* Parse register, whether loop start or loop end. */
                    opcode.ctrl_loop.start_loop = ((first_dword >> 24) & 0xF) == 0;
                    opcode.ctrl_loop.reg_index = ((first_dword >> 20) & 0xF);

                    /* Read number of iters if loop start. */
                    if (opcode.ctrl_loop.start_loop) {
                        opcode.ctrl_loop.num_iters = GetNextDword();
                    }
                }
                break;
            case CheatVmOpcodeType_LoadRegisterStatic:
                {
                    /* 400R0000 VVVVVVVV VVVVVVVV */
                    /* Read additional words. */
                    opcode.ldr_static.reg_index = ((first_dword >> 16) & 0xF);
                    opcode.ldr_static.value = (((u64)GetNextDword()) << 32ul) | ((u64)GetNextDword());
                }
                break;
            case CheatVmOpcodeType_LoadRegisterMemory:
                {
                    /* 5TMRI0AA AAAAAAAA */
                    /* Read additional words. */
                    const u32 second_dword = GetNextDword();
                    opcode.ldr_memory.bit_width = (first_dword >> 24) & 0xF;
                    opcode.ldr_memory.mem_type = (MemoryAccessType)((first_dword >> 20) & 0xF);
                    opcode.ldr_memory.reg_index = ((first_dword >> 16) & 0xF);
                    opcode.ldr_memory.load_from_reg = ((first_dword >> 12) & 0xF) != 0;
                    opcode.ldr_memory.rel_address = ((u64)(first_dword & 0xFF) << 32ul) | ((u64)second_dword);
                }
                break;
            case CheatVmOpcodeType_StoreStaticToAddress:
                {
                    /* 6T0RIor0 VVVVVVVV VVVVVVVV */
                    /* Read additional words. */
                    opcode.str_static.bit_width = (first_dword >> 24) & 0xF;
                    opcode.str_static.reg_index = ((first_dword >> 16) & 0xF);
                    opcode.str_static.increment_reg = ((first_dword >> 12) & 0xF) != 0;
                    opcode.str_static.add_offset_reg = ((first_dword >> 8) & 0xF) != 0;
                    opcode.str_static.offset_reg_index = ((first_dword >> 4) & 0xF);
                    opcode.str_static.value = (((u64)GetNextDword()) << 32ul) | ((u64)GetNextDword());
                }
                break;
            case CheatVmOpcodeType_PerformArithmeticStatic:
                {
                    /* 7T0RC000 VVVVVVVV */
                    /* Read additional words. */
                    opcode.perform_math_static.bit_width = (first_dword >> 24) & 0xF;
                    opcode.perform_math_static.reg_index = ((first_dword >> 16) & 0xF);
                    opcode.perform_math_static.math_type = (RegisterArithmeticType)((first_dword >> 12) & 0xF);
                    opcode.perform_math_static.value = GetNextDword();
                }
                break;
            case CheatVmOpcodeType_BeginKeypressConditionalBlock:
                {
                    /* 8kkkkkkk */
                    /* Just parse the mask. */
                    opcode.begin_keypress_cond.key_mask = first_dword & 0x0FFFFFFF;
                }
                break;
            case CheatVmOpcodeType_PerformArithmeticRegister:
                {
                    /* 9TCRSIs0 (VVVVVVVV (VVVVVVVV)) */
                    opcode.perform_math_reg.bit_width = (first_dword >> 24) & 0xF;
                    opcode.perform_math_reg.math_type = (RegisterArithmeticType)((first_dword >> 20) & 0xF);
                    opcode.perform_math_reg.dst_reg_index = ((first_dword >> 16) & 0xF);
                    opcode.perform_math_reg.src_reg_1_index = ((first_dword >> 12) & 0xF);
                    opcode.perform_math_reg.has_immediate = ((first_dword >> 8) & 0xF) != 0;
                    if (opcode.perform_math_reg.has_immediate) {
                        opcode.perform_math_reg.src_reg_2_index = 0;
                        opcode.perform_math_reg.value = GetNextVmInt(opcode.perform_math_reg.bit_width);
                    } else {
                        opcode.perform_math_reg.src_reg_2_index = ((first_dword >> 4) & 0xF);
                    }
                }
                break;
            case CheatVmOpcodeType_StoreRegisterToAddress:
                {
                    /* ATSRIOxa (aaaaaaaa) */
                    /* A = opcode 10 */
                    /* T = bit width */
                    /* S = src register index */
                    /* R = address register index */
                    /* I = 1 if increment address register, 0 if not increment address register */
                    /* O = offset type, 0 = None, 1 = Register, 2 = Immediate, 3 = Memory Region,
                            4 = Memory Region + Relative Address (ignore address register), 5 = Memory Region + Relative Address */
                    /* x = offset register (for offset type 1), memory type (for offset type 3) */
                    /* a = relative address (for offset type 2+3) */
                    opcode.str_register.bit_width = (first_dword >> 24) & 0xF;
                    opcode.str_register.str_reg_index  = ((first_dword >> 20) & 0xF);
                    opcode.str_register.addr_reg_index = ((first_dword >> 16) & 0xF);
                    opcode.str_register.increment_reg  = ((first_dword >> 12) & 0xF) != 0;
                    opcode.str_register.ofs_type = (StoreRegisterOffsetType)(((first_dword >> 8) & 0xF));
                    opcode.str_register.ofs_reg_index = ((first_dword >> 4) & 0xF);
                    switch (opcode.str_register.ofs_type) {
                        case StoreRegisterOffsetType_None:
                        case StoreRegisterOffsetType_Reg:
                            /* Nothing more to do */
                            break;
                        case StoreRegisterOffsetType_Imm:
                            opcode.str_register.rel_address = (((u64)(first_dword & 0xF) << 32ul) | ((u64)GetNextDword()));
                            break;
                        case StoreRegisterOffsetType_MemReg:
                            opcode.str_register.mem_type = (MemoryAccessType)((first_dword >> 4) & 0xF);
                            break;
                        case StoreRegisterOffsetType_MemImm:
                        case StoreRegisterOffsetType_MemImmReg:
                            opcode.str_register.mem_type = (MemoryAccessType)((first_dword >> 4) & 0xF);
                            opcode.str_register.rel_address = (((u64)(first_dword & 0xF) << 32ul) | ((u64)GetNextDword()));
                            break;
                        default:
                            opcode.str_register.ofs_type = StoreRegisterOffsetType_None;
                            break;
                    }
                }
                break;
            case CheatVmOpcodeType_BeginRegisterConditionalBlock:
                {
                    /* C0TcSX## */
                    /* C0TcS0Ma aaaaaaaa */
                    /* C0TcS1Mr */
                    /* C0TcS2Ra aaaaaaaa */
                    /* C0TcS3Rr */
                    /* C0TcS400 VVVVVVVV (VVVVVVVV) */
                    /* C0TcS5X0 */
                    /* C0 = opcode 0xC0 */
                    /* T = bit width */
                    /* c = condition type. */
                    /* S = source register. */
                    /* X = value operand type, 0 = main/heap with relative offset, 1 = main/heap with offset register, */
                    /*     2 = register with relative offset, 3 = register with offset register, 4 = static value, 5 = other register. */
                    /* M = memory type. */
                    /* R = address register. */
                    /* a = relative address. */
                    /* r = offset register. */
                    /* X = other register. */
                    /* V = value. */
                    opcode.begin_reg_cond.bit_width = (first_dword >> 20) & 0xF;
                    opcode.begin_reg_cond.cond_type = (ConditionalComparisonType)((first_dword >> 16) & 0xF);
                    opcode.begin_reg_cond.val_reg_index  = ((first_dword >> 12) & 0xF);
                    opcode.begin_reg_cond.comp_type = (CompareRegisterValueType)((first_dword >> 8) & 0xF);

                    switch (opcode.begin_reg_cond.comp_type) {
                        case CompareRegisterValueType_StaticValue:
                            opcode.begin_reg_cond.value = GetNextVmInt(opcode.begin_reg_cond.bit_width);
                            break;
                        case CompareRegisterValueType_OtherRegister:
                            opcode.begin_reg_cond.other_reg_index = ((first_dword >> 4) & 0xF);
                            break;
                        case CompareRegisterValueType_MemoryRelAddr:
                            opcode.begin_reg_cond.mem_type = (MemoryAccessType)((first_dword >> 4) & 0xF);
                            opcode.begin_reg_cond.rel_address = (((u64)(first_dword & 0xF) << 32ul) | ((u64)GetNextDword()));
                            break;
                        case CompareRegisterValueType_MemoryOfsReg:
                            opcode.begin_reg_cond.mem_type = (MemoryAccessType)((first_dword >> 4) & 0xF);
                            opcode.begin_reg_cond.ofs_reg_index = (first_dword & 0xF);
                            break;
                        case CompareRegisterValueType_RegisterRelAddr:
                            opcode.begin_reg_cond.addr_reg_index = ((first_dword >> 4) & 0xF);
                            opcode.begin_reg_cond.rel_address = (((u64)(first_dword & 0xF) << 32ul) | ((u64)GetNextDword()));
                            break;
                        case CompareRegisterValueType_RegisterOfsReg:
                            opcode.begin_reg_cond.addr_reg_index = ((first_dword >> 4) & 0xF);
                            opcode.begin_reg_cond.ofs_reg_index = (first_dword & 0xF);
                            break;
                    }
                }
                break;
            case CheatVmOpcodeType_SaveRestoreRegister:
                {
                    /* C10D0Sx0 */
                    /* C1 = opcode 0xC1 */
                    /* D = destination index. */
                    /* S = source index. */
                    /* x = 3 if clearing reg, 2 if clearing saved value, 1 if saving a register, 0 if restoring a register. */
                    /* NOTE: If we add more save slots later, current encoding is backwards compatible. */
                    opcode.save_restore_reg.dst_index = (first_dword >> 16) & 0xF;
                    opcode.save_restore_reg.src_index = (first_dword >> 8) & 0xF;
                    opcode.save_restore_reg.op_type = (SaveRestoreRegisterOpType)((first_dword >> 4) & 0xF);
                }
                break;
            case CheatVmOpcodeType_SaveRestoreRegisterMask:
                {
                    /* C2x0XXXX */
                    /* C2 = opcode 0xC2 */
                    /* x = 3 if clearing reg, 2 if clearing saved value, 1 if saving, 0 if restoring. */
                    /* X = 16-bit bitmask, bit i --> save or restore register i. */
                    opcode.save_restore_regmask.op_type = (SaveRestoreRegisterOpType)((first_dword >> 20) & 0xF);
                    for (size_t i = 0; i < NumRegisters; i++) {
                        opcode.save_restore_regmask.should_operate[i] = (first_dword & (1u << i)) != 0;
                    }
                }
                break;
            case CheatVmOpcodeType_DebugLog:
                {
                    /* FFFTIX## */
                    /* FFFTI0Ma aaaaaaaa */
                    /* FFFTI1Mr */
                    /* FFFTI2Ra aaaaaaaa */
                    /* FFFTI3Rr */
                    /* FFFTI4X0 */
                    /* FFF = opcode 0xFFF */
                    /* T = bit width. */
                    /* I = log id. */
                    /* X = value operand type, 0 = main/heap with relative offset, 1 = main/heap with offset register, */
                    /*     2 = register with relative offset, 3 = register with offset register, 4 = register value. */
                    /* M = memory type. */
                    /* R = address register. */
                    /* a = relative address. */
                    /* r = offset register. */
                    /* X = value register. */
                    opcode.debug_log.bit_width = (first_dword >> 16) & 0xF;
                    opcode.debug_log.log_id  = ((first_dword >> 12) & 0xF);
                    opcode.debug_log.val_type = (DebugLogValueType)((first_dword >> 8) & 0xF);

                    switch (opcode.debug_log.val_type) {
                        case DebugLogValueType_RegisterValue:
                            opcode.debug_log.val_reg_index = ((first_dword >> 4) & 0xF);
                            break;
                        case DebugLogValueType_MemoryRelAddr:
                            opcode.debug_log.mem_type = (MemoryAccessType)((first_dword >> 4) & 0xF);
                            opcode.debug_log.rel_address = (((u64)(first_dword & 0xF) << 32ul) | ((u64)GetNextDword()));
                            break;
                        case DebugLogValueType_MemoryOfsReg:
                            opcode.debug_log.mem_type = (MemoryAccessType)((first_dword >> 4) & 0xF);
                            opcode.debug_log.ofs_reg_index = (first_dword & 0xF);
                            break;
                        case DebugLogValueType_RegisterRelAddr:
                            opcode.debug_log.addr_reg_index = ((first_dword >> 4) & 0xF);
                            opcode.debug_log.rel_address = (((u64)(first_dword & 0xF) << 32ul) | ((u64)GetNextDword()));
                            break;
                        case DebugLogValueType_RegisterOfsReg:
                            opcode.debug_log.addr_reg_index = ((first_dword >> 4) & 0xF);
                            opcode.debug_log.ofs_reg_index = (first_dword & 0xF);
                            break;
                    }
                }
                break;
            case CheatVmOpcodeType_ExtendedWidth:
            case CheatVmOpcodeType_DoubleExtendedWidth:
            default:
                /* Unrecognized instruction cannot be decoded. */
                valid = false;
                break;
        }

        /* End decoding. */
        return valid;
    }

    void CheatVirtualMachine::SkipConditionalBlock() {
        if (this->condition_depth > 0) {
            /* We want to continue until we're out of the current block. */
            const size_t desired_depth = this->condition_depth - 1;

            CheatVmOpcode skip_opcode;
            while (this->condition_depth > desired_depth && this->DecodeNextOpcode(&skip_opcode)) {
                /* Decode instructions until we see end of the current conditional block. */
                /* NOTE: This is broken in gateway's implementation. */
                /* Gateway currently checks for "0x2" instead of "0x20000000" */
                /* In addition, they do a linear scan instead of correctly decoding opcodes. */
                /* This causes issues if "0x2" appears as an immediate in the conditional block... */

                /* We also support nesting of conditional blocks, and Gateway does not. */
                if (skip_opcode.begin_conditional_block) {
                    this->condition_depth++;
                } else if (skip_opcode.opcode == CheatVmOpcodeType_EndConditionalBlock) {
                    this->condition_depth--;
                }
            }
        } else {
            /* Skipping, but this->condition_depth = 0. */
            /* This is an error condition. */
            /* However, I don't actually believe it is possible for this to happen. */
            /* I guess we'll throw a fatal error here, so as to encourage me to fix the VM */
            /* in the event that someone triggers it? I don't know how you'd do that. */
            R_ASSERT(ResultVirtualMachineInvalidConditionDepth());
        }
    }

    u64 CheatVirtualMachine::GetVmInt(VmInt value, u32 bit_width) {
        switch (bit_width) {
            case 1:
                return value.bit8;
            case 2:
                return value.bit16;
            case 4:
                return value.bit32;
            case 8:
                return value.bit64;
            default:
                /* Invalid bit width -> return 0. */
                return 0;
        }
    }

    u64 CheatVirtualMachine::GetCheatProcessAddress(const CheatProcessMetadata* metadata, MemoryAccessType mem_type, u64 rel_address) {
        switch (mem_type) {
            case MemoryAccessType_MainNso:
            default:
                return metadata->main_nso_extents.base + rel_address;
            case MemoryAccessType_Heap:
                return metadata->heap_extents.base + rel_address;
        }
    }

    void CheatVirtualMachine::ResetState() {
        for (size_t i = 0; i < CheatVirtualMachine::NumRegisters; i++) {
            this->registers[i] = 0;
            this->saved_values[i] = 0;
            this->loop_tops[i] = 0;
        }
        this->instruction_ptr = 0;
        this->condition_depth = 0;
        this->decode_success = true;
    }

    bool CheatVirtualMachine::LoadProgram(const CheatEntry *cheats, size_t num_cheats) {
        /* Reset opcode count. */
        this->num_opcodes = 0;

        for (size_t i = 0; i < num_cheats; i++) {
            if (cheats[i].enabled) {
                /* Bounds check. */
                if (cheats[i].definition.num_opcodes + this->num_opcodes > MaximumProgramOpcodeCount) {
                    this->num_opcodes = 0;
                    return false;
                }

                for (size_t n = 0; n < cheats[i].definition.num_opcodes; n++) {
                    this->program[this->num_opcodes++] = cheats[i].definition.opcodes[n];
                }
            }
        }

        return true;
    }

    void CheatVirtualMachine::Execute(const CheatProcessMetadata *metadata) {
        CheatVmOpcode cur_opcode;
        u64 kHeld = 0;

        /* Get Keys held. */
        hid::GetKeysHeld(&kHeld);

        this->OpenDebugLogFile();
        ON_SCOPE_EXIT { this->CloseDebugLogFile(); };

        this->LogToDebugFile("Started VM execution.\n");
        this->LogToDebugFile("Main NSO:  %012lx\n", metadata->main_nso_extents.base);
        this->LogToDebugFile("Heap:      %012lx\n", metadata->main_nso_extents.base);
        this->LogToDebugFile("Keys Held: %08x\n", (u32)(kHeld & 0x0FFFFFFF));

        /* Clear VM state. */
        this->ResetState();

        /* Loop until program finishes. */
        while (this->DecodeNextOpcode(&cur_opcode)) {
            this->LogToDebugFile("Instruction Ptr: %04x\n", (u32)this->instruction_ptr);

            for (size_t i = 0; i < NumRegisters; i++) {
                this->LogToDebugFile("Registers[%02x]: %016lx\n", i, this->registers[i]);
            }

            for (size_t i = 0; i < NumRegisters; i++) {
                this->LogToDebugFile("SavedRegs[%02x]: %016lx\n", i, this->saved_values[i]);
            }
            this->LogOpcode(&cur_opcode);

            /* Increment conditional depth, if relevant. */
            if (cur_opcode.begin_conditional_block) {
                this->condition_depth++;
            }

            switch (cur_opcode.opcode) {
                case CheatVmOpcodeType_StoreStatic:
                    {
                        /* Calculate address, write value to memory. */
                        u64 dst_address = GetCheatProcessAddress(metadata, cur_opcode.store_static.mem_type, cur_opcode.store_static.rel_address + this->registers[cur_opcode.store_static.offset_register]);
                        u64 dst_value = GetVmInt(cur_opcode.store_static.value, cur_opcode.store_static.bit_width);
                        switch (cur_opcode.store_static.bit_width) {
                            case 1:
                            case 2:
                            case 4:
                            case 8:
                                dmnt::cheat::impl::WriteCheatProcessMemoryUnsafe(dst_address, &dst_value, cur_opcode.store_static.bit_width);
                                break;
                        }
                    }
                    break;
                case CheatVmOpcodeType_BeginConditionalBlock:
                    {
                        /* Read value from memory. */
                        u64 src_address = GetCheatProcessAddress(metadata, cur_opcode.begin_cond.mem_type, cur_opcode.begin_cond.rel_address);
                        u64 src_value = 0;
                        switch (cur_opcode.store_static.bit_width) {
                            case 1:
                            case 2:
                            case 4:
                            case 8:
                                dmnt::cheat::impl::ReadCheatProcessMemoryUnsafe(src_address, &src_value, cur_opcode.begin_cond.bit_width);
                                break;
                        }
                        /* Check against condition. */
                        u64 cond_value = GetVmInt(cur_opcode.begin_cond.value, cur_opcode.begin_cond.bit_width);
                        bool cond_met = false;
                        switch (cur_opcode.begin_cond.cond_type) {
                            case ConditionalComparisonType_GT:
                                cond_met = src_value > cond_value;
                                break;
                            case ConditionalComparisonType_GE:
                                cond_met = src_value >= cond_value;
                                break;
                            case ConditionalComparisonType_LT:
                                cond_met = src_value < cond_value;
                                break;
                            case ConditionalComparisonType_LE:
                                cond_met = src_value <= cond_value;
                                break;
                            case ConditionalComparisonType_EQ:
                                cond_met = src_value == cond_value;
                                break;
                            case ConditionalComparisonType_NE:
                                cond_met = src_value != cond_value;
                                break;
                        }
                        /* Skip conditional block if condition not met. */
                        if (!cond_met) {
                            this->SkipConditionalBlock();
                        }
                    }
                    break;
                case CheatVmOpcodeType_EndConditionalBlock:
                    /* Decrement the condition depth. */
                    /* We will assume, graciously, that mismatched conditional block ends are a nop. */
                    if (this->condition_depth > 0) {
                        this->condition_depth--;
                    }
                    break;
                case CheatVmOpcodeType_ControlLoop:
                    if (cur_opcode.ctrl_loop.start_loop) {
                        /* Start a loop. */
                        this->registers[cur_opcode.ctrl_loop.reg_index] = cur_opcode.ctrl_loop.num_iters;
                        this->loop_tops[cur_opcode.ctrl_loop.reg_index] = this->instruction_ptr;
                    } else {
                        /* End a loop. */
                        this->registers[cur_opcode.ctrl_loop.reg_index]--;
                        if (this->registers[cur_opcode.ctrl_loop.reg_index] != 0) {
                            this->instruction_ptr = this->loop_tops[cur_opcode.ctrl_loop.reg_index];
                        }
                    }
                    break;
                case CheatVmOpcodeType_LoadRegisterStatic:
                    /* Set a register to a static value. */
                    this->registers[cur_opcode.ldr_static.reg_index] = cur_opcode.ldr_static.value;
                    break;
                case CheatVmOpcodeType_LoadRegisterMemory:
                    {
                        /* Choose source address. */
                        u64 src_address;
                        if (cur_opcode.ldr_memory.load_from_reg) {
                            src_address = this->registers[cur_opcode.ldr_memory.reg_index] + cur_opcode.ldr_memory.rel_address;
                        } else {
                            src_address = GetCheatProcessAddress(metadata, cur_opcode.ldr_memory.mem_type, cur_opcode.ldr_memory.rel_address);
                        }
                        /* Read into register. Gateway only reads on valid bitwidth. */
                        switch (cur_opcode.ldr_memory.bit_width) {
                            case 1:
                            case 2:
                            case 4:
                            case 8:
                                dmnt::cheat::impl::ReadCheatProcessMemoryUnsafe(src_address, &this->registers[cur_opcode.ldr_memory.reg_index], cur_opcode.ldr_memory.bit_width);
                                break;
                        }
                    }
                    break;
                case CheatVmOpcodeType_StoreStaticToAddress:
                    {
                        /* Calculate address. */
                        u64 dst_address = this->registers[cur_opcode.str_static.reg_index];
                        u64 dst_value = cur_opcode.str_static.value;
                        if (cur_opcode.str_static.add_offset_reg) {
                            dst_address += this->registers[cur_opcode.str_static.offset_reg_index];
                        }
                        /* Write value to memory. Gateway only writes on valid bitwidth. */
                        switch (cur_opcode.str_static.bit_width) {
                            case 1:
                            case 2:
                            case 4:
                            case 8:
                                dmnt::cheat::impl::WriteCheatProcessMemoryUnsafe(dst_address, &dst_value, cur_opcode.str_static.bit_width);
                                break;
                        }
                        /* Increment register if relevant. */
                        if (cur_opcode.str_static.increment_reg) {
                            this->registers[cur_opcode.str_static.reg_index] += cur_opcode.str_static.bit_width;
                        }
                    }
                    break;
                case CheatVmOpcodeType_PerformArithmeticStatic:
                    {
                        /* Do requested math. */
                        switch (cur_opcode.perform_math_static.math_type) {
                            case RegisterArithmeticType_Addition:
                                this->registers[cur_opcode.perform_math_static.reg_index] +=  (u64)cur_opcode.perform_math_static.value;
                                break;
                            case RegisterArithmeticType_Subtraction:
                                this->registers[cur_opcode.perform_math_static.reg_index] -=  (u64)cur_opcode.perform_math_static.value;
                                break;
                            case RegisterArithmeticType_Multiplication:
                                this->registers[cur_opcode.perform_math_static.reg_index] *=  (u64)cur_opcode.perform_math_static.value;
                                break;
                            case RegisterArithmeticType_LeftShift:
                                this->registers[cur_opcode.perform_math_static.reg_index] <<= (u64)cur_opcode.perform_math_static.value;
                                break;
                            case RegisterArithmeticType_RightShift:
                                this->registers[cur_opcode.perform_math_static.reg_index] >>= (u64)cur_opcode.perform_math_static.value;
                                break;
                            default:
                                /* Do not handle extensions here. */
                                break;
                        }
                        /* Apply bit width. */
                        switch (cur_opcode.perform_math_static.bit_width) {
                            case 1:
                                this->registers[cur_opcode.perform_math_static.reg_index] = static_cast<u8>(this->registers[cur_opcode.perform_math_static.reg_index]);
                                break;
                            case 2:
                                this->registers[cur_opcode.perform_math_static.reg_index] = static_cast<u16>(this->registers[cur_opcode.perform_math_static.reg_index]);
                                break;
                            case 4:
                                this->registers[cur_opcode.perform_math_static.reg_index] = static_cast<u32>(this->registers[cur_opcode.perform_math_static.reg_index]);
                                break;
                            case 8:
                                this->registers[cur_opcode.perform_math_static.reg_index] = static_cast<u64>(this->registers[cur_opcode.perform_math_static.reg_index]);
                                break;
                        }
                    }
                    break;
                case CheatVmOpcodeType_BeginKeypressConditionalBlock:
                    /* Check for keypress. */
                    if ((cur_opcode.begin_keypress_cond.key_mask & kHeld) != cur_opcode.begin_keypress_cond.key_mask) {
                        /* Keys not pressed. Skip conditional block. */
                        this->SkipConditionalBlock();
                    }
                    break;
                case CheatVmOpcodeType_PerformArithmeticRegister:
                    {
                        const u64 operand_1_value = this->registers[cur_opcode.perform_math_reg.src_reg_1_index];
                        const u64 operand_2_value = cur_opcode.perform_math_reg.has_immediate ?
                                                    GetVmInt(cur_opcode.perform_math_reg.value, cur_opcode.perform_math_reg.bit_width) :
                                                    this->registers[cur_opcode.perform_math_reg.src_reg_2_index];

                        u64 res_val = 0;
                        /* Do requested math. */
                        switch (cur_opcode.perform_math_reg.math_type) {
                            case RegisterArithmeticType_Addition:
                                res_val = operand_1_value + operand_2_value;
                                break;
                            case RegisterArithmeticType_Subtraction:
                                res_val = operand_1_value - operand_2_value;
                                break;
                            case RegisterArithmeticType_Multiplication:
                                res_val = operand_1_value * operand_2_value;
                                break;
                            case RegisterArithmeticType_LeftShift:
                                res_val = operand_1_value << operand_2_value;
                                break;
                            case RegisterArithmeticType_RightShift:
                                res_val = operand_1_value >> operand_2_value;
                                break;
                            case RegisterArithmeticType_LogicalAnd:
                                res_val = operand_1_value & operand_2_value;
                                break;
                            case RegisterArithmeticType_LogicalOr:
                                res_val = operand_1_value | operand_2_value;
                                break;
                            case RegisterArithmeticType_LogicalNot:
                                res_val = ~operand_1_value;
                                break;
                            case RegisterArithmeticType_LogicalXor:
                                res_val = operand_1_value ^ operand_2_value;
                                break;
                            case RegisterArithmeticType_None:
                                res_val = operand_1_value;
                                break;
                        }


                        /* Apply bit width. */
                        switch (cur_opcode.perform_math_reg.bit_width) {
                            case 1:
                                res_val = static_cast<u8>(res_val);
                                break;
                            case 2:
                                res_val = static_cast<u16>(res_val);
                                break;
                            case 4:
                                res_val = static_cast<u32>(res_val);
                                break;
                            case 8:
                                res_val = static_cast<u64>(res_val);
                                break;
                        }

                        /* Save to register. */
                        this->registers[cur_opcode.perform_math_reg.dst_reg_index] = res_val;
                    }
                    break;
                case CheatVmOpcodeType_StoreRegisterToAddress:
                    {
                        /* Calculate address. */
                        u64 dst_value   = this->registers[cur_opcode.str_register.str_reg_index];
                        u64 dst_address = this->registers[cur_opcode.str_register.addr_reg_index];
                        switch (cur_opcode.str_register.ofs_type) {
                            case StoreRegisterOffsetType_None:
                                /* Nothing more to do */
                                break;
                            case StoreRegisterOffsetType_Reg:
                                dst_address += this->registers[cur_opcode.str_register.ofs_reg_index];
                                break;
                            case StoreRegisterOffsetType_Imm:
                                dst_address += cur_opcode.str_register.rel_address;
                                break;
                            case StoreRegisterOffsetType_MemReg:
                                dst_address = GetCheatProcessAddress(metadata, cur_opcode.str_register.mem_type, this->registers[cur_opcode.str_register.addr_reg_index]);
                                break;
                            case StoreRegisterOffsetType_MemImm:
                                dst_address = GetCheatProcessAddress(metadata, cur_opcode.str_register.mem_type, cur_opcode.str_register.rel_address);
                                break;
                            case StoreRegisterOffsetType_MemImmReg:
                                dst_address = GetCheatProcessAddress(metadata, cur_opcode.str_register.mem_type, this->registers[cur_opcode.str_register.addr_reg_index] + cur_opcode.str_register.rel_address);
                                break;
                        }

                        /* Write value to memory. Write only on valid bitwidth. */
                        switch (cur_opcode.str_register.bit_width) {
                            case 1:
                            case 2:
                            case 4:
                            case 8:
                                dmnt::cheat::impl::WriteCheatProcessMemoryUnsafe(dst_address, &dst_value, cur_opcode.str_register.bit_width);
                                break;
                        }

                        /* Increment register if relevant. */
                        if (cur_opcode.str_register.increment_reg) {
                            this->registers[cur_opcode.str_register.addr_reg_index] += cur_opcode.str_register.bit_width;
                        }
                    }
                    break;
                case CheatVmOpcodeType_BeginRegisterConditionalBlock:
                    {
                        /* Get value from register. */
                        u64 src_value = 0;
                        switch (cur_opcode.begin_reg_cond.bit_width) {
                            case 1:
                                src_value = static_cast<u8>(this->registers[cur_opcode.begin_reg_cond.val_reg_index]  & 0xFFul);
                                break;
                            case 2:
                                src_value = static_cast<u16>(this->registers[cur_opcode.begin_reg_cond.val_reg_index] & 0xFFFFul);
                                break;
                            case 4:
                                src_value = static_cast<u32>(this->registers[cur_opcode.begin_reg_cond.val_reg_index] & 0xFFFFFFFFul);
                                break;
                            case 8:
                                src_value = static_cast<u64>(this->registers[cur_opcode.begin_reg_cond.val_reg_index] & 0xFFFFFFFFFFFFFFFFul);
                                break;
                        }

                        /* Read value from memory. */
                        u64 cond_value = 0;
                        if (cur_opcode.begin_reg_cond.comp_type == CompareRegisterValueType_StaticValue) {
                            cond_value = GetVmInt(cur_opcode.begin_reg_cond.value, cur_opcode.begin_reg_cond.bit_width);
                        } else if (cur_opcode.begin_reg_cond.comp_type == CompareRegisterValueType_OtherRegister) {
                            switch (cur_opcode.begin_reg_cond.bit_width) {
                                case 1:
                                    cond_value = static_cast<u8>(this->registers[cur_opcode.begin_reg_cond.other_reg_index]  & 0xFFul);
                                    break;
                                case 2:
                                    cond_value = static_cast<u16>(this->registers[cur_opcode.begin_reg_cond.other_reg_index] & 0xFFFFul);
                                    break;
                                case 4:
                                    cond_value = static_cast<u32>(this->registers[cur_opcode.begin_reg_cond.other_reg_index] & 0xFFFFFFFFul);
                                    break;
                                case 8:
                                    cond_value = static_cast<u64>(this->registers[cur_opcode.begin_reg_cond.other_reg_index] & 0xFFFFFFFFFFFFFFFFul);
                                    break;
                            }
                        } else {
                            u64 cond_address = 0;
                            switch (cur_opcode.begin_reg_cond.comp_type) {
                                case CompareRegisterValueType_MemoryRelAddr:
                                    cond_address = GetCheatProcessAddress(metadata, cur_opcode.begin_reg_cond.mem_type, cur_opcode.begin_reg_cond.rel_address);
                                    break;
                                case CompareRegisterValueType_MemoryOfsReg:
                                    cond_address = GetCheatProcessAddress(metadata, cur_opcode.begin_reg_cond.mem_type, this->registers[cur_opcode.begin_reg_cond.ofs_reg_index]);
                                    break;
                                case CompareRegisterValueType_RegisterRelAddr:
                                    cond_address = this->registers[cur_opcode.begin_reg_cond.addr_reg_index] + cur_opcode.begin_reg_cond.rel_address;
                                    break;
                                case CompareRegisterValueType_RegisterOfsReg:
                                    cond_address = this->registers[cur_opcode.begin_reg_cond.addr_reg_index] + this->registers[cur_opcode.begin_reg_cond.ofs_reg_index];
                                    break;
                                default:
                                    break;
                            }
                            switch (cur_opcode.begin_reg_cond.bit_width) {
                                case 1:
                                case 2:
                                case 4:
                                case 8:
                                    dmnt::cheat::impl::ReadCheatProcessMemoryUnsafe(cond_address, &cond_value, cur_opcode.begin_reg_cond.bit_width);
                                    break;
                            }
                        }

                        /* Check against condition. */
                        bool cond_met = false;
                        switch (cur_opcode.begin_reg_cond.cond_type) {
                            case ConditionalComparisonType_GT:
                                cond_met = src_value > cond_value;
                                break;
                            case ConditionalComparisonType_GE:
                                cond_met = src_value >= cond_value;
                                break;
                            case ConditionalComparisonType_LT:
                                cond_met = src_value < cond_value;
                                break;
                            case ConditionalComparisonType_LE:
                                cond_met = src_value <= cond_value;
                                break;
                            case ConditionalComparisonType_EQ:
                                cond_met = src_value == cond_value;
                                break;
                            case ConditionalComparisonType_NE:
                                cond_met = src_value != cond_value;
                                break;
                        }

                        /* Skip conditional block if condition not met. */
                        if (!cond_met) {
                            this->SkipConditionalBlock();
                        }
                    }
                    break;
                case CheatVmOpcodeType_SaveRestoreRegister:
                    /* Save or restore a register. */
                    switch (cur_opcode.save_restore_reg.op_type) {
                        case SaveRestoreRegisterOpType_ClearRegs:
                            this->registers[cur_opcode.save_restore_reg.dst_index] = 0ul;
                            break;
                        case SaveRestoreRegisterOpType_ClearSaved:
                            this->saved_values[cur_opcode.save_restore_reg.dst_index] = 0ul;
                            break;
                        case SaveRestoreRegisterOpType_Save:
                            this->saved_values[cur_opcode.save_restore_reg.dst_index] = this->registers[cur_opcode.save_restore_reg.src_index];
                            break;
                        case SaveRestoreRegisterOpType_Restore:
                        default:
                            this->registers[cur_opcode.save_restore_reg.dst_index] = this->saved_values[cur_opcode.save_restore_reg.src_index];
                            break;
                    }
                    break;
                case CheatVmOpcodeType_SaveRestoreRegisterMask:
                    /* Save or restore register mask. */
                    u64 *src;
                    u64 *dst;
                    switch (cur_opcode.save_restore_regmask.op_type) {
                        case SaveRestoreRegisterOpType_ClearSaved:
                        case SaveRestoreRegisterOpType_Save:
                            src = this->registers;
                            dst = this->saved_values;
                            break;
                        case SaveRestoreRegisterOpType_ClearRegs:
                        case SaveRestoreRegisterOpType_Restore:
                        default:
                            src = this->registers;
                            dst = this->saved_values;
                            break;
                    }
                    for (size_t i = 0; i < NumRegisters; i++) {
                        if (cur_opcode.save_restore_regmask.should_operate[i]) {
                            switch (cur_opcode.save_restore_regmask.op_type) {
                                case SaveRestoreRegisterOpType_ClearSaved:
                                case SaveRestoreRegisterOpType_ClearRegs:
                                    dst[i] = 0ul;
                                    break;
                                case SaveRestoreRegisterOpType_Save:
                                case SaveRestoreRegisterOpType_Restore:
                                default:
                                    dst[i] = src[i];
                                    break;
                            }
                        }
                    }
                    break;
                case CheatVmOpcodeType_DebugLog:
                    {
                        /* Read value from memory. */
                        u64 log_value = 0;
                        if (cur_opcode.debug_log.val_type == DebugLogValueType_RegisterValue) {
                            switch (cur_opcode.debug_log.bit_width) {
                                case 1:
                                    log_value = static_cast<u8>(this->registers[cur_opcode.debug_log.val_reg_index]  & 0xFFul);
                                    break;
                                case 2:
                                    log_value = static_cast<u16>(this->registers[cur_opcode.debug_log.val_reg_index] & 0xFFFFul);
                                    break;
                                case 4:
                                    log_value = static_cast<u32>(this->registers[cur_opcode.debug_log.val_reg_index] & 0xFFFFFFFFul);
                                    break;
                                case 8:
                                    log_value = static_cast<u64>(this->registers[cur_opcode.debug_log.val_reg_index] & 0xFFFFFFFFFFFFFFFFul);
                                    break;
                            }
                        } else {
                            u64 val_address = 0;
                            switch (cur_opcode.debug_log.val_type) {
                                case DebugLogValueType_MemoryRelAddr:
                                    val_address = GetCheatProcessAddress(metadata, cur_opcode.debug_log.mem_type, cur_opcode.debug_log.rel_address);
                                    break;
                                case DebugLogValueType_MemoryOfsReg:
                                    val_address = GetCheatProcessAddress(metadata, cur_opcode.debug_log.mem_type, this->registers[cur_opcode.debug_log.ofs_reg_index]);
                                    break;
                                case DebugLogValueType_RegisterRelAddr:
                                    val_address = this->registers[cur_opcode.debug_log.addr_reg_index] + cur_opcode.debug_log.rel_address;
                                    break;
                                case DebugLogValueType_RegisterOfsReg:
                                    val_address = this->registers[cur_opcode.debug_log.addr_reg_index] + this->registers[cur_opcode.debug_log.ofs_reg_index];
                                    break;
                                default:
                                    break;
                            }
                            switch (cur_opcode.debug_log.bit_width) {
                                case 1:
                                case 2:
                                case 4:
                                case 8:
                                    dmnt::cheat::impl::ReadCheatProcessMemoryUnsafe(val_address, &log_value, cur_opcode.debug_log.bit_width);
                                    break;
                            }
                        }

                        /* Log value. */
                        this->DebugLog(cur_opcode.debug_log.log_id, log_value);
                    }
                    break;
                default:
                    /* By default, we do a no-op. */
                    break;
            }
        }
    }

}