mirror of
				https://github.com/Atmosphere-NX/Atmosphere-libs.git
				synced 2025-10-31 11:36:02 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			248 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			248 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) Atmosphère-NX
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| #include <vapours/common.hpp>
 | |
| #include <vapours/assert.hpp>
 | |
| 
 | |
| namespace ams::util {
 | |
| 
 | |
|     /* Implementation of TinyMT (mersenne twister RNG). */
 | |
|     /* Like Nintendo, we will use the sample parameters. */
 | |
|     class TinyMT {
 | |
|         public:
 | |
|             static constexpr size_t NumStateWords = 4;
 | |
| 
 | |
|             struct State {
 | |
|                 u32 data[NumStateWords];
 | |
|             };
 | |
|         private:
 | |
|             static constexpr u32 ParamMat1  = 0x8F7011EE;
 | |
|             static constexpr u32 ParamMat2  = 0xFC78FF1F;
 | |
|             static constexpr u32 ParamTmat  = 0x3793FDFF;
 | |
| 
 | |
|             static constexpr u32 ParamMult  = 0x6C078965;
 | |
|             static constexpr u32 ParamPlus  = 0x0019660D;
 | |
|             static constexpr u32 ParamXor   = 0x5D588B65;
 | |
| 
 | |
|             static constexpr u32 TopBitmask = 0x7FFFFFFF;
 | |
| 
 | |
|             static constexpr int MinimumInitIterations   = 8;
 | |
|             static constexpr int NumDiscardedInitOutputs = 8;
 | |
| 
 | |
|             static constexpr inline u32 XorByShifted27(u32 value) {
 | |
|                 return value ^ (value >> 27);
 | |
|             }
 | |
| 
 | |
|             static constexpr inline u32 XorByShifted30(u32 value) {
 | |
|                 return value ^ (value >> 30);
 | |
|             }
 | |
|         private:
 | |
|             State m_state;
 | |
|         private:
 | |
|             /* Internal API. */
 | |
|             void FinalizeInitialization()  {
 | |
|                 const u32 state0 = m_state.data[0] & TopBitmask;
 | |
|                 const u32 state1 = m_state.data[1];
 | |
|                 const u32 state2 = m_state.data[2];
 | |
|                 const u32 state3 = m_state.data[3];
 | |
| 
 | |
|                 if (state0 == 0 && state1 == 0 && state2 == 0 && state3 == 0) {
 | |
|                     m_state.data[0] = 'T';
 | |
|                     m_state.data[1] = 'I';
 | |
|                     m_state.data[2] = 'N';
 | |
|                     m_state.data[3] = 'Y';
 | |
|                 }
 | |
| 
 | |
|                 for (int i = 0; i < NumDiscardedInitOutputs; i++) {
 | |
|                     this->GenerateRandomU32();
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             u32 GenerateRandomU24() { return (this->GenerateRandomU32() >> 8); }
 | |
| 
 | |
|             static void GenerateInitialValuePlus(TinyMT::State *state, int index, u32 value) {
 | |
|                 u32 &state0 = state->data[(index + 0) % NumStateWords];
 | |
|                 u32 &state1 = state->data[(index + 1) % NumStateWords];
 | |
|                 u32 &state2 = state->data[(index + 2) % NumStateWords];
 | |
|                 u32 &state3 = state->data[(index + 3) % NumStateWords];
 | |
| 
 | |
|                 const u32 x = XorByShifted27(state0 ^ state1 ^ state3) * ParamPlus;
 | |
|                 const u32 y = x + index + value;
 | |
| 
 | |
|                 state0  = y;
 | |
|                 state1 += x;
 | |
|                 state2 += y;
 | |
|             }
 | |
| 
 | |
|             static void GenerateInitialValueXor(TinyMT::State *state, int index) {
 | |
|                 u32 &state0 = state->data[(index + 0) % NumStateWords];
 | |
|                 u32 &state1 = state->data[(index + 1) % NumStateWords];
 | |
|                 u32 &state2 = state->data[(index + 2) % NumStateWords];
 | |
|                 u32 &state3 = state->data[(index + 3) % NumStateWords];
 | |
| 
 | |
|                 const u32 x = XorByShifted27(state0 + state1 + state3) * ParamXor;
 | |
|                 const u32 y = x - index;
 | |
| 
 | |
|                 state0  = y;
 | |
|                 state1 ^= x;
 | |
|                 state2 ^= y;
 | |
|             }
 | |
|         public:
 | |
|             constexpr explicit TinyMT(util::ConstantInitializeTag) : m_state() { /* ... */ }
 | |
|             explicit TinyMT() { /* ... */ }
 | |
| 
 | |
|             /* Initialization. */
 | |
|             void Initialize(u32 seed) {
 | |
|                 m_state.data[0] = seed;
 | |
|                 m_state.data[1] = ParamMat1;
 | |
|                 m_state.data[2] = ParamMat2;
 | |
|                 m_state.data[3] = ParamTmat;
 | |
| 
 | |
|                 for (int i = 1; i < MinimumInitIterations; i++) {
 | |
|                     const u32 mixed = XorByShifted30(m_state.data[(i - 1) % NumStateWords]);
 | |
|                     m_state.data[i % NumStateWords] ^= mixed * ParamMult + i;
 | |
|                 }
 | |
| 
 | |
|                 this->FinalizeInitialization();
 | |
|             }
 | |
| 
 | |
|             void Initialize(const u32 *seed, int seed_count) {
 | |
|                 m_state.data[0] = 0;
 | |
|                 m_state.data[1] = ParamMat1;
 | |
|                 m_state.data[2] = ParamMat2;
 | |
|                 m_state.data[3] = ParamTmat;
 | |
| 
 | |
|                 {
 | |
|                     const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1;
 | |
| 
 | |
|                     GenerateInitialValuePlus(std::addressof(m_state), 0, seed_count);
 | |
| 
 | |
|                     for (int i = 0; i < num_init_iterations; i++) {
 | |
|                         GenerateInitialValuePlus(std::addressof(m_state), (i + 1) % NumStateWords, (i < seed_count) ? seed[i] : 0);
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < static_cast<int>(NumStateWords); i++) {
 | |
|                         GenerateInitialValueXor(std::addressof(m_state), (i + 1 + num_init_iterations) % NumStateWords);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 this->FinalizeInitialization();
 | |
|             }
 | |
| 
 | |
|             /* State management. */
 | |
|             void GetState(TinyMT::State *out) const {
 | |
|                 std::memcpy(out->data, m_state.data, sizeof(m_state));
 | |
|             }
 | |
| 
 | |
|             void SetState(const TinyMT::State *state) {
 | |
|                 std::memcpy(m_state.data, state->data, sizeof(m_state));
 | |
|             }
 | |
| 
 | |
|             /* Random generation. */
 | |
|             NOINLINE void GenerateRandomBytes(void *dst, size_t size) {
 | |
|                 const uintptr_t start         = reinterpret_cast<uintptr_t>(dst);
 | |
|                 const uintptr_t end           = start + size;
 | |
|                 const uintptr_t aligned_start = util::AlignUp(start, 4);
 | |
|                 const uintptr_t aligned_end   = util::AlignDown(end, 4);
 | |
| 
 | |
|                 /* Make sure we're aligned. */
 | |
|                 if (start < aligned_start) {
 | |
|                     const u32 rnd = this->GenerateRandomU32();
 | |
|                     std::memcpy(dst, std::addressof(rnd), aligned_start - start);
 | |
|                 }
 | |
| 
 | |
|                 /* Write as many aligned u32s as we can. */
 | |
|                 {
 | |
|                     u32 *       cur_dst = reinterpret_cast<u32 *>(aligned_start);
 | |
|                     u32 * const end_dst = reinterpret_cast<u32 *>(aligned_end);
 | |
| 
 | |
|                     while (cur_dst < end_dst) {
 | |
|                         *(cur_dst++) = this->GenerateRandomU32();
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 /* Handle any leftover unaligned data. */
 | |
|                 if (aligned_end < end) {
 | |
|                     const u32 rnd = this->GenerateRandomU32();
 | |
|                     std::memcpy(reinterpret_cast<void *>(aligned_end), std::addressof(rnd), end - aligned_end);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             NOINLINE u32 GenerateRandomU32() {
 | |
|                 /* Advance state. */
 | |
|                 const u32 x0 = (m_state.data[0] & TopBitmask) ^ m_state.data[1] ^ m_state.data[2];
 | |
|                 const u32 y0 = m_state.data[3];
 | |
|                 const u32 x1 = x0 ^ (x0 << 1);
 | |
|                 const u32 y1 = y0 ^ (y0 >> 1) ^ x1;
 | |
| 
 | |
|                 const u32 state0 = m_state.data[1];
 | |
|                       u32 state1 = m_state.data[2];
 | |
|                       u32 state2 = x1 ^ (y1 << 10);
 | |
|                 const u32 state3 = y1;
 | |
| 
 | |
|                 if ((y1 & 1) != 0) {
 | |
|                     state1 ^= ParamMat1;
 | |
|                     state2 ^= ParamMat2;
 | |
|                 }
 | |
| 
 | |
|                 m_state.data[0] = state0;
 | |
|                 m_state.data[1] = state1;
 | |
|                 m_state.data[2] = state2;
 | |
|                 m_state.data[3] = state3;
 | |
| 
 | |
|                 /* Temper. */
 | |
|                 const u32 t1 = state0 + (state2 >> 8);
 | |
|                       u32 t0 = state3 ^ t1;
 | |
| 
 | |
|                 if ((t1 & 1) != 0) {
 | |
|                     t0 ^= ParamTmat;
 | |
|                 }
 | |
| 
 | |
|                 return t0;
 | |
|             }
 | |
| 
 | |
|             inline u64 GenerateRandomU64() {
 | |
|                 const u32 lo = this->GenerateRandomU32();
 | |
|                 const u32 hi = this->GenerateRandomU32();
 | |
|                 return (static_cast<u64>(hi) << 32) | static_cast<u64>(lo);
 | |
|             }
 | |
| 
 | |
|             inline float  GenerateRandomF32() {
 | |
|                 /* Floats have 24 bits of mantissa. */
 | |
|                 constexpr int MantissaBits = 24;
 | |
|                 return GenerateRandomU24() * (1.0f / (1ul << MantissaBits));
 | |
|             }
 | |
| 
 | |
|             inline double GenerateRandomF64() {
 | |
|                 /* Doubles have 53 bits of mantissa. */
 | |
|                 /* The smart way to generate 53 bits of random would be to use 32 bits */
 | |
|                 /* from the first rnd32() call, and then 21 from the second. */
 | |
|                 /* Nintendo does not. They use (32 - 5) = 27 bits from the first rnd32() */
 | |
|                 /* call, and (32 - 6) bits from the second. We'll do what they do, but */
 | |
|                 /* There's not a clear reason why. */
 | |
|                 constexpr int MantissaBits = 53;
 | |
|                 constexpr int Shift1st  = (64 - MantissaBits) / 2;
 | |
|                 constexpr int Shift2nd  = (64 - MantissaBits) - Shift1st;
 | |
| 
 | |
|                 const u32 first  = (this->GenerateRandomU32() >> Shift1st);
 | |
|                 const u32 second = (this->GenerateRandomU32() >> Shift2nd);
 | |
| 
 | |
|                 return (1.0 * first * (static_cast<u64>(1) << (32 - Shift2nd)) + second) * (1.0 / (static_cast<u64>(1) << MantissaBits));
 | |
|             }
 | |
|     };
 | |
| 
 | |
| } |