Atmosphere-libs/include/stratosphere/waitable_manager.hpp

348 lines
13 KiB
C++

/*
* Copyright (c) 2018 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <switch.h>
#include <memory>
#include "../meta_tools.hpp"
#include "waitable_manager_base.hpp"
#include "event.hpp"
#include "ipc.hpp"
#include "servers.hpp"
#include "scope_guard.hpp"
static inline Handle GetCurrentThreadHandle() {
return threadGetCurHandle();
}
struct DefaultManagerOptions {
static constexpr size_t PointerBufferSize = 0;
static constexpr size_t MaxDomains = 0;
static constexpr size_t MaxDomainObjects = 0;
};
struct DomainEntry {
ServiceObjectHolder obj_holder;
IDomainObject *owner = nullptr;
};
template<typename ManagerOptions = DefaultManagerOptions>
class WaitableManager : public SessionManagerBase {
private:
/* Domain Manager */
HosMutex domain_lock;
std::array<std::weak_ptr<IDomainObject>, ManagerOptions::MaxDomains> domains;
std::array<bool, ManagerOptions::MaxDomains> is_domain_allocated;
std::array<DomainEntry, ManagerOptions::MaxDomainObjects> domain_objects;
/* Waitable Manager */
std::vector<IWaitable *> to_add_waitables;
std::vector<IWaitable *> waitables;
u32 num_threads;
Thread *threads;
HosMutex process_lock;
HosMutex signal_lock;
HosMutex add_lock;
HosMutex cur_thread_lock;
bool has_new_waitables = false;
IWaitable *next_signaled = nullptr;
Handle cur_thread_handle = INVALID_HANDLE;
public:
WaitableManager(u32 n, u32 ss = 0x8000) : num_threads(n-1) {
u32 prio;
u32 cpuid = svcGetCurrentProcessorNumber();
Result rc;
threads = new Thread[num_threads];
if (num_threads) {
if (R_FAILED((rc = svcGetThreadPriority(&prio, CUR_THREAD_HANDLE)))) {
fatalSimple(rc);
}
for (unsigned int i = 0; i < num_threads; i++) {
threads[i] = {0};
threadCreate(&threads[i], &WaitableManager::ProcessLoop, this, ss, prio, cpuid);
}
}
}
~WaitableManager() override {
/* This should call the destructor for every waitable. */
std::for_each(waitables.begin(), waitables.end(), std::default_delete<IWaitable>{});
/* TODO: Exit the threads? */
}
virtual void AddWaitable(IWaitable *w) override {
std::scoped_lock lk{this->add_lock};
this->to_add_waitables.push_back(w);
w->SetManager(this);
this->has_new_waitables = true;
this->CancelSynchronization();
}
virtual void CancelSynchronization() {
svcCancelSynchronization(GetProcessingThreadHandle());
}
virtual void NotifySignaled(IWaitable *w) override {
std::scoped_lock lk{this->signal_lock};
if (this->next_signaled == nullptr) {
this->next_signaled = w;
}
this->CancelSynchronization();
}
virtual void Process() override {
/* Add initial set of waitables. */
AddWaitablesInternal();
Result rc;
for (unsigned int i = 0; i < num_threads; i++) {
if (R_FAILED((rc = threadStart(&threads[i])))) {
fatalSimple(rc);
}
}
ProcessLoop(this);
}
private:
void SetProcessingThreadHandle(Handle h) {
std::scoped_lock<HosMutex> lk{this->cur_thread_lock};
this->cur_thread_handle = h;
}
Handle GetProcessingThreadHandle() {
std::scoped_lock<HosMutex> lk{this->cur_thread_lock};
return this->cur_thread_handle;
}
static void ProcessLoop(void *t) {
WaitableManager *this_ptr = (WaitableManager *)t;
while (true) {
IWaitable *w = this_ptr->GetWaitable();
if (w) {
Result rc = w->HandleSignaled(0);
if (rc == 0xF601) {
/* Close! */
delete w;
} else {
this_ptr->AddWaitable(w);
}
}
}
}
IWaitable *GetWaitable() {
std::scoped_lock lk{this->process_lock};
/* Set processing thread handle while in scope. */
SetProcessingThreadHandle(GetCurrentThreadHandle());
ON_SCOPE_EXIT {
SetProcessingThreadHandle(INVALID_HANDLE);
};
/* Prepare variables for result. */
this->next_signaled = nullptr;
IWaitable *result = nullptr;
/* Add new waitables, if any. */
AddWaitablesInternal();
/* First, see if anything's already signaled. */
for (auto &w : this->waitables) {
if (w->IsSignaled()) {
result = w;
}
}
/* It's possible somebody signaled us while we were iterating. */
{
std::scoped_lock lk{this->signal_lock};
if (this->next_signaled != nullptr) result = this->next_signaled;
}
if (result == nullptr) {
std::vector<Handle> handles;
std::vector<IWaitable *> wait_list;
int handle_index = 0;
Result rc;
while (result == nullptr) {
/* Sort waitables by priority. */
std::sort(this->waitables.begin(), this->waitables.end(), IWaitable::Compare);
/* Copy out handles. */
handles.resize(this->waitables.size());
wait_list.resize(this->waitables.size());
unsigned int num_handles = 0;
for (unsigned int i = 0; i < this->waitables.size(); i++) {
Handle h = this->waitables[i]->GetHandle();
if (h != INVALID_HANDLE) {
wait_list[num_handles] = this->waitables[i];
handles[num_handles++] = h;
}
}
/* Do deferred callback for each waitable. This has to happen before we wait on anything else. */
for (auto & waitable : this->waitables) {
if (waitable->IsDeferred()) {
waitable->HandleDeferred();
}
}
/* Wait forever. */
rc = svcWaitSynchronization(&handle_index, handles.data(), num_handles, U64_MAX);
IWaitable *w = wait_list[handle_index];
size_t w_ind = std::distance(this->waitables.begin(), std::find(this->waitables.begin(), this->waitables.end(), w));
if (R_SUCCEEDED(rc)) {
std::for_each(waitables.begin(), waitables.begin() + w_ind, std::mem_fn(&IWaitable::UpdatePriority));
result = w;
} else if (rc == 0xEA01) {
/* Timeout: Just update priorities. */
std::for_each(waitables.begin(), waitables.end(), std::mem_fn(&IWaitable::UpdatePriority));
} else if (rc == 0xEC01) {
/* svcCancelSynchronization was called. */
AddWaitablesInternal();
{
std::scoped_lock lk{this->signal_lock};
if (this->next_signaled != nullptr) {
result = this->next_signaled;
}
}
} else if (rc != 0xF601 && rc != 0xE401) {
std::abort();
} else {
this->waitables.erase(this->waitables.begin() + w_ind);
std::for_each(waitables.begin(), waitables.begin() + w_ind - 1, std::mem_fn(&IWaitable::UpdatePriority));
delete w;
}
}
}
this->waitables.erase(std::remove_if(this->waitables.begin(), this->waitables.end(), [&](IWaitable *w) { return w == result; }), this->waitables.end());
return result;
}
void AddWaitablesInternal() {
std::scoped_lock lk{this->add_lock};
if (this->has_new_waitables) {
this->waitables.insert(this->waitables.end(), this->to_add_waitables.begin(), this->to_add_waitables.end());
this->to_add_waitables.clear();
this->has_new_waitables = false;
}
}
/* Session Manager */
public:
virtual void AddSession(Handle server_h, ServiceObjectHolder &&service) override {
this->AddWaitable(new ServiceSession(server_h, ManagerOptions::PointerBufferSize, std::move(service)));
}
/* Domain Manager */
public:
virtual std::shared_ptr<IDomainObject> AllocateDomain() override {
std::scoped_lock lk{this->domain_lock};
for (size_t i = 0; i < ManagerOptions::MaxDomains; i++) {
if (!this->is_domain_allocated[i]) {
auto new_domain = std::make_shared<IDomainObject>(this);
this->domains[i] = new_domain;
this->is_domain_allocated[i] = true;
return new_domain;
}
}
return nullptr;
}
void FreeDomain(IDomainObject *domain) override {
std::scoped_lock lk{this->domain_lock};
for (size_t i = 0; i < ManagerOptions::MaxDomainObjects; i++) {
FreeObject(domain, i+1);
}
for (size_t i = 0; i < ManagerOptions::MaxDomains; i++) {
auto observe = this->domains[i].lock();
if (observe.get() == domain) {
this->is_domain_allocated[i] = false;
break;
}
}
}
virtual Result ReserveObject(IDomainObject *domain, u32 *out_object_id) override {
std::scoped_lock lk{this->domain_lock};
for (size_t i = 0; i < ManagerOptions::MaxDomainObjects; i++) {
if (this->domain_objects[i].owner == nullptr) {
this->domain_objects[i].owner = domain;
*out_object_id = i+1;
return 0;
}
}
return 0x25A0A;
}
virtual Result ReserveSpecificObject(IDomainObject *domain, u32 object_id) override {
std::scoped_lock lk{this->domain_lock};
if (this->domain_objects[object_id-1].owner == nullptr) {
this->domain_objects[object_id-1].owner = domain;
return 0;
}
return 0x25A0A;
}
virtual void SetObject(IDomainObject *domain, u32 object_id, ServiceObjectHolder&& holder) override {
std::scoped_lock lk{this->domain_lock};
if (this->domain_objects[object_id-1].owner == domain) {
this->domain_objects[object_id-1].obj_holder = std::move(holder);
}
}
virtual ServiceObjectHolder *GetObject(IDomainObject *domain, u32 object_id) override {
std::scoped_lock lk{this->domain_lock};
if (this->domain_objects[object_id-1].owner == domain) {
return &this->domain_objects[object_id-1].obj_holder;
}
return nullptr;
}
virtual Result FreeObject(IDomainObject *domain, u32 object_id) override {
std::scoped_lock lk{this->domain_lock};
if (this->domain_objects[object_id-1].owner == domain) {
this->domain_objects[object_id-1].obj_holder.Reset();
this->domain_objects[object_id-1].owner = nullptr;
return 0x0;
}
return 0x3D80B;
}
virtual Result ForceFreeObject(u32 object_id) override {
std::scoped_lock lk{this->domain_lock};
if (this->domain_objects[object_id-1].owner != nullptr) {
this->domain_objects[object_id-1].obj_holder.Reset();
this->domain_objects[object_id-1].owner = nullptr;
return 0x0;
}
return 0x3D80B;
}
};