/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #pragma once #include #include #include namespace ams::crypto::impl { class Sha256CompileTimeImpl { public: static constexpr size_t HashSize = 0x20; static constexpr size_t BlockSize = 0x40; private: enum State { State_None, State_Initialized, State_Done, }; private: u32 m_intermediate_hash[HashSize / sizeof(u32)]; u8 m_buffer[BlockSize]; size_t m_buffered_bytes; u64 m_bits_consumed; State m_state; public: constexpr Sha256CompileTimeImpl() : m_intermediate_hash(), m_buffer(), m_buffered_bytes(), m_bits_consumed(), m_state(State_None) { /* ... */ } constexpr void Initialize() { /* Reset buffered bytes/bits. */ m_buffered_bytes = 0; m_bits_consumed = 0; /* Set intermediate hash. */ m_intermediate_hash[0] = 0x6A09E667; m_intermediate_hash[1] = 0xBB67AE85; m_intermediate_hash[2] = 0x3C6EF372; m_intermediate_hash[3] = 0xA54FF53A; m_intermediate_hash[4] = 0x510E527F; m_intermediate_hash[5] = 0x9B05688C; m_intermediate_hash[6] = 0x1F83D9AB; m_intermediate_hash[7] = 0x5BE0CD19; /* Set state. */ m_state = State_Initialized; } template || std::same_as || std::same_as || std::same_as>::type> constexpr void Update(const T *data, size_t size) { static_assert(sizeof(T) == 1); /* Verify we're in a state to update. */ AMS_ASSERT(m_state == State_Initialized); /* Advance our input bit count. */ m_bits_consumed += BITSIZEOF(u8) * (((m_buffered_bytes + size) / BlockSize) * BlockSize); /* Process anything we have buffered. */ size_t remaining = size; if (m_buffered_bytes > 0) { const size_t copy_size = std::min(BlockSize - m_buffered_bytes, remaining); for (size_t i = 0; i < copy_size; ++i) { m_buffer[m_buffered_bytes + i] = static_cast(data[i]); } data += copy_size; remaining -= copy_size; m_buffered_bytes += copy_size; /* Process a block, if we filled one. */ if (m_buffered_bytes == BlockSize) { this->ProcessBlock(m_buffer); m_buffered_bytes = 0; } } /* Process blocks, if we have any. */ while (remaining >= BlockSize) { u8 block[BlockSize] = {}; for (size_t i = 0; i < BlockSize; ++i) { block[i] = static_cast(data[i]); } this->ProcessBlock(block); data += BlockSize; remaining -= BlockSize; } /* Copy any leftover data to our buffer. */ if (remaining > 0) { m_buffered_bytes = remaining; for (size_t i = 0; i < remaining; ++i) { m_buffer[i] = static_cast(data[i]); } } } constexpr void GetHash(u8 *dst, size_t size) { /* Verify we're in a state to get hash. */ AMS_ASSERT(m_state == State_Initialized || m_state == State_Done); AMS_ASSERT(size >= HashSize); AMS_UNUSED(size); /* If we need to, process the last block. */ if (m_state == State_Initialized) { this->ProcessLastBlock(); m_state = State_Done; } /* Copy the output hash. */ for (size_t i = 0; i < HashSize / sizeof(u32); ++i) { const u32 v = m_intermediate_hash[i]; dst[sizeof(u32) * i + 3] = static_cast(v >> (BITSIZEOF(u8) * 0)); dst[sizeof(u32) * i + 2] = static_cast(v >> (BITSIZEOF(u8) * 1)); dst[sizeof(u32) * i + 1] = static_cast(v >> (BITSIZEOF(u8) * 2)); dst[sizeof(u32) * i + 0] = static_cast(v >> (BITSIZEOF(u8) * 3)); } } constexpr size_t GetBufferedDataSize() const { return m_buffered_bytes; } constexpr void GetBufferedData(u8 *dst, size_t dst_size) const { AMS_ASSERT(dst_size >= this->GetBufferedDataSize()); AMS_UNUSED(dst_size); for (size_t i = 0; i < m_buffered_bytes; ++i) { dst[i] = m_buffer[i]; } } private: static constexpr ALWAYS_INLINE u32 Choose(u32 x, u32 y, u32 z) { return (x & y) ^ ((~x) & z); } static constexpr ALWAYS_INLINE u32 Majority(u32 x, u32 y, u32 z) { return (x & y) ^ (x & z) ^ (y & z); } static constexpr ALWAYS_INLINE u32 LargeSigma0(u32 x) { return util::RotateRight(x, 2) ^ util::RotateRight(x, 13) ^ util::RotateRight(x, 22); } static constexpr ALWAYS_INLINE u32 LargeSigma1(u32 x) { return util::RotateRight(x, 6) ^ util::RotateRight(x, 11) ^ util::RotateRight(x, 25); } static constexpr ALWAYS_INLINE u32 SmallSigma0(u32 x) { return util::RotateRight(x, 7) ^ util::RotateRight(x, 18) ^ (x >> 3); } static constexpr ALWAYS_INLINE u32 SmallSigma1(u32 x) { return util::RotateRight(x, 17) ^ util::RotateRight(x, 19) ^ (x >> 10); } constexpr void ProcessBlock(const u8 *data) { /* Load work variables. */ u32 a = m_intermediate_hash[0]; u32 b = m_intermediate_hash[1]; u32 c = m_intermediate_hash[2]; u32 d = m_intermediate_hash[3]; u32 e = m_intermediate_hash[4]; u32 f = m_intermediate_hash[5]; u32 g = m_intermediate_hash[6]; u32 h = m_intermediate_hash[7]; u32 tmp[2]{}; size_t i = 0; /* Copy the input. */ u32 w[64]{}; for (size_t i = 0; i < BlockSize / sizeof(u32); ++i) { u32 v = 0; v |= static_cast(data[sizeof(u32) * i + 0]) << (BITSIZEOF(u8) * 3); v |= static_cast(data[sizeof(u32) * i + 1]) << (BITSIZEOF(u8) * 2); v |= static_cast(data[sizeof(u32) * i + 2]) << (BITSIZEOF(u8) * 1); v |= static_cast(data[sizeof(u32) * i + 3]) << (BITSIZEOF(u8) * 0); w[i] = v; } /* Initialize the rest of w. */ for (i = BlockSize / sizeof(u32); i < util::size(w); ++i) { const u32 *prev = w + (i - BlockSize / sizeof(u32)); w[i] = prev[0] + SmallSigma0(prev[1]) + prev[9] + SmallSigma1(prev[14]); } /* Perform rounds. */ { const u32 RoundConstants[0x40] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; for (i = 0; i < 64; ++i) { tmp[0] = h + LargeSigma1(e) + Choose(e, f, g) + RoundConstants[i] + w[i]; tmp[1] = LargeSigma0(a) + Majority(a, b, c); h = g; g = f; f = e; e = d + tmp[0]; d = c; c = b; b = a; a = tmp[0] + tmp[1]; } } /* Update intermediate hash. */ m_intermediate_hash[0] += a; m_intermediate_hash[1] += b; m_intermediate_hash[2] += c; m_intermediate_hash[3] += d; m_intermediate_hash[4] += e; m_intermediate_hash[5] += f; m_intermediate_hash[6] += g; m_intermediate_hash[7] += h; } constexpr void ProcessLastBlock() { /* Setup the final block. */ constexpr const auto BlockSizeWithoutSizeField = BlockSize - sizeof(u64); /* Increment our bits consumed. */ m_bits_consumed += BITSIZEOF(u8) * m_buffered_bytes; /* Add 0x80 terminator. */ m_buffer[m_buffered_bytes++] = 0x80; /* If we can process the size field directly, do so, otherwise set up to process it. */ if (m_buffered_bytes <= BlockSizeWithoutSizeField) { /* Clear up to size field. */ for (size_t i = 0; i < BlockSizeWithoutSizeField - m_buffered_bytes; ++i) { m_buffer[m_buffered_bytes + i] = 0; } } else { /* Consume full block */ for (size_t i = 0; i < BlockSize - m_buffered_bytes; ++i) { m_buffer[m_buffered_bytes + i] = 0; } this->ProcessBlock(m_buffer); /* Clear up to size field. */ for (size_t i = 0; i < BlockSizeWithoutSizeField; ++i) { m_buffer[i] = 0; } } } }; }