/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include "kern_secure_monitor.hpp"
#include "kern_k_sleep_manager.hpp"
namespace ams::kern::board::nintendo::nx {
namespace {
constexpr size_t SecureAlignment = 128_KB;
constexpr size_t SecureSizeMax = util::AlignDown(512_MB - 1, SecureAlignment);
/* Global variables for panic. */
constinit const volatile bool g_call_smc_on_panic = false;
/* Global variables for secure memory. */
constinit KSpinLock g_secure_applet_lock;
constinit bool g_secure_applet_memory_used = false;
constinit KVirtualAddress g_secure_applet_memory_address = Null;
constinit KSpinLock g_secure_region_lock;
constinit bool g_secure_region_used = false;
constinit KPhysicalAddress g_secure_region_phys_addr = Null;
constinit size_t g_secure_region_size = 0;
ALWAYS_INLINE util::BitPack32 GetKernelConfigurationForInit() {
u64 value = 0;
smc::init::GetConfig(&value, 1, smc::ConfigItem::KernelConfiguration);
return util::BitPack32{static_cast(value)};
}
ALWAYS_INLINE u32 GetMemoryModeForInit() {
u64 value = 0;
smc::init::GetConfig(&value, 1, smc::ConfigItem::MemoryMode);
return static_cast(value);
}
ALWAYS_INLINE smc::MemoryArrangement GetMemoryArrangeForInit() {
switch(GetMemoryModeForInit() & 0x3F) {
case 0x01:
default:
return smc::MemoryArrangement_4GB;
case 0x02:
return smc::MemoryArrangement_4GBForAppletDev;
case 0x03:
return smc::MemoryArrangement_4GBForSystemDev;
case 0x11:
return smc::MemoryArrangement_6GB;
case 0x12:
return smc::MemoryArrangement_6GBForAppletDev;
case 0x21:
return smc::MemoryArrangement_8GB;
}
}
ALWAYS_INLINE u64 GenerateRandomU64ForInit() {
u64 value;
smc::init::GenerateRandomBytes(std::addressof(value), sizeof(value));
return value;
}
ALWAYS_INLINE u64 GenerateRandomU64FromSmc() {
u64 value;
smc::GenerateRandomBytes(std::addressof(value), sizeof(value));
return value;
}
ALWAYS_INLINE u64 GetConfigU64(smc::ConfigItem which) {
u64 value;
smc::GetConfig(&value, 1, which);
return value;
}
ALWAYS_INLINE u32 GetConfigU32(smc::ConfigItem which) {
return static_cast(GetConfigU64(which));
}
ALWAYS_INLINE bool GetConfigBool(smc::ConfigItem which) {
return GetConfigU64(which) != 0;
}
ALWAYS_INLINE bool CheckRegisterAllowedTable(const u8 *table, const size_t offset) {
return (table[(offset / sizeof(u32)) / BITSIZEOF(u8)] & (1u << ((offset / sizeof(u32)) % BITSIZEOF(u8)))) != 0;
}
/* TODO: Generate this from a list of register names (see similar logic in exosphere)? */
constexpr inline const u8 McKernelRegisterWhitelist[(PageSize / sizeof(u32)) / BITSIZEOF(u8)] = {
0x9F, 0x31, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0xC0, 0x73, 0x3E, 0x6F, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xE4, 0xFF, 0xFF, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
/* TODO: Generate this from a list of register names (see similar logic in exosphere)? */
constexpr inline const u8 McUserRegisterWhitelist[(PageSize / sizeof(u32)) / BITSIZEOF(u8)] = {
0x00, 0x00, 0x20, 0x00, 0xF0, 0xFF, 0xF7, 0x01,
0xCD, 0xFE, 0xC0, 0xFE, 0x00, 0x00, 0x00, 0x00,
0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6E,
0x30, 0x05, 0x06, 0xB0, 0x71, 0xC8, 0x43, 0x04,
0x80, 0xFF, 0x08, 0x80, 0x03, 0x38, 0x8E, 0x1F,
0xC8, 0xFF, 0xFF, 0x00, 0x0E, 0x00, 0x00, 0x00,
0xF0, 0x1F, 0x00, 0x30, 0xF0, 0x03, 0x03, 0x30,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x31, 0x00, 0x00, 0x00, 0x00,
0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x0C, 0x00, 0xFE, 0x0F,
0x01, 0x00, 0x80, 0x00, 0x00, 0x08, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
bool IsRegisterAccessibleToPrivileged(ams::svc::PhysicalAddress address) {
/* Find the region for the address. */
const KMemoryRegion *region = KMemoryLayout::Find(KPhysicalAddress(address));
if (AMS_LIKELY(region != nullptr)) {
if (AMS_LIKELY(region->IsDerivedFrom(KMemoryRegionType_MemoryController))) {
/* Check the region is valid. */
MESOSPHERE_ABORT_UNLESS(region->GetEndAddress() != 0);
/* Get the offset within the region. */
const size_t offset = address - region->GetAddress();
MESOSPHERE_ABORT_UNLESS(offset < region->GetSize());
/* Check the whitelist. */
if (AMS_LIKELY(CheckRegisterAllowedTable(McKernelRegisterWhitelist, offset))) {
return true;
}
}
}
return false;
}
bool IsRegisterAccessibleToUser(ams::svc::PhysicalAddress address) {
/* Find the region for the address. */
const KMemoryRegion *region = KMemoryLayout::Find(KPhysicalAddress(address));
if (AMS_LIKELY(region != nullptr)) {
/* The PMC is always allowed. */
if (region->IsDerivedFrom(KMemoryRegionType_PowerManagementController)) {
return true;
}
/* Memory controller is allowed if the register is whitelisted. */
if (region->IsDerivedFrom(KMemoryRegionType_MemoryController ) ||
region->IsDerivedFrom(KMemoryRegionType_MemoryController0) ||
region->IsDerivedFrom(KMemoryRegionType_MemoryController1))
{
/* Check the region is valid. */
MESOSPHERE_ABORT_UNLESS(region->GetEndAddress() != 0);
/* Get the offset within the region. */
const size_t offset = address - region->GetAddress();
MESOSPHERE_ABORT_UNLESS(offset < region->GetSize());
/* Check the whitelist. */
if (AMS_LIKELY(CheckRegisterAllowedTable(McUserRegisterWhitelist, offset))) {
return true;
}
}
}
return false;
}
bool SetSecureRegion(KPhysicalAddress phys_addr, size_t size) {
/* Ensure size is valid. */
if (size > SecureSizeMax) {
return false;
}
/* Ensure address and size are aligned. */
if (!util::IsAligned(GetInteger(phys_addr), SecureAlignment)) {
return false;
}
if (!util::IsAligned(size, SecureAlignment)) {
return false;
}
/* Disable interrupts and acquire the secure region lock. */
KScopedInterruptDisable di;
KScopedSpinLock lk(g_secure_region_lock);
/* If size is non-zero, we're allocating the secure region. Otherwise, we're freeing it. */
if (size != 0) {
/* Verify that the secure region is free. */
if (g_secure_region_used) {
return false;
}
/* Set the secure region. */
g_secure_region_used = true;
g_secure_region_phys_addr = phys_addr;
g_secure_region_size = size;
} else {
/* Verify that the secure region is in use. */
if (!g_secure_region_used) {
return false;
}
/* Verify that the address being freed is the secure region. */
if (phys_addr != g_secure_region_phys_addr) {
return false;
}
/* Clear the secure region. */
g_secure_region_used = false;
g_secure_region_phys_addr = Null;
g_secure_region_size = 0;
}
/* Configure the carveout with the secure monitor. */
smc::ConfigureCarveout(1, GetInteger(phys_addr), size);
return true;
}
Result AllocateSecureMemoryForApplet(KVirtualAddress *out, size_t size) {
/* Verify that the size is valid. */
R_UNLESS(util::IsAligned(size, PageSize), svc::ResultInvalidSize());
R_UNLESS(size <= KSystemControl::SecureAppletMemorySize, svc::ResultOutOfMemory());
/* Disable interrupts and acquire the secure applet lock. */
KScopedInterruptDisable di;
KScopedSpinLock lk(g_secure_applet_lock);
/* Check that memory is reserved for secure applet use. */
MESOSPHERE_ABORT_UNLESS(g_secure_applet_memory_address != Null);
/* Verify that the secure applet memory isn't already being used. */
R_UNLESS(!g_secure_applet_memory_used, svc::ResultOutOfMemory());
/* Return the secure applet memory. */
g_secure_applet_memory_used = true;
*out = g_secure_applet_memory_address;
R_SUCCEED();
}
void FreeSecureMemoryForApplet(KVirtualAddress address, size_t size) {
/* Disable interrupts and acquire the secure applet lock. */
KScopedInterruptDisable di;
KScopedSpinLock lk(g_secure_applet_lock);
/* Verify that the memory being freed is correct. */
MESOSPHERE_ABORT_UNLESS(address == g_secure_applet_memory_address);
MESOSPHERE_ABORT_UNLESS(size <= KSystemControl::SecureAppletMemorySize);
MESOSPHERE_ABORT_UNLESS(util::IsAligned(size, PageSize));
MESOSPHERE_ABORT_UNLESS(g_secure_applet_memory_used);
/* Release the secure applet memory. */
g_secure_applet_memory_used = false;
}
u32 GetVersionIdentifier() {
u32 value = 0;
value |= static_cast(ATMOSPHERE_RELEASE_VERSION_MICRO) << 0;
value |= static_cast(ATMOSPHERE_RELEASE_VERSION_MINOR) << 8;
value |= static_cast(ATMOSPHERE_RELEASE_VERSION_MAJOR) << 16;
value |= static_cast('M') << 24;
return value;
}
}
/* Initialization. */
size_t KSystemControl::Init::GetRealMemorySize() {
/* TODO: Move this into a header for the MC in general. */
constexpr u32 MemoryControllerConfigurationRegister = 0x70019050;
u32 config_value;
smc::init::ReadWriteRegister(std::addressof(config_value), MemoryControllerConfigurationRegister, 0, 0);
return static_cast(config_value & 0x3FFF) << 20;
}
size_t KSystemControl::Init::GetIntendedMemorySize() {
switch (GetKernelConfigurationForInit().Get()) {
case smc::MemorySize_4GB:
default: /* All invalid modes should go to 4GB. */
return 4_GB;
case smc::MemorySize_6GB:
return 6_GB;
case smc::MemorySize_8GB:
return 8_GB;
}
}
bool KSystemControl::Init::ShouldIncreaseThreadResourceLimit() {
return GetKernelConfigurationForInit().Get();
}
size_t KSystemControl::Init::GetApplicationPoolSize() {
/* Get the base pool size. */
const size_t base_pool_size = []() ALWAYS_INLINE_LAMBDA -> size_t {
switch (GetMemoryArrangeForInit()) {
case smc::MemoryArrangement_4GB:
default:
return 3285_MB;
case smc::MemoryArrangement_4GBForAppletDev:
return 2048_MB;
case smc::MemoryArrangement_4GBForSystemDev:
return 3285_MB;
case smc::MemoryArrangement_6GB:
return 4916_MB;
case smc::MemoryArrangement_6GBForAppletDev:
return 3285_MB;
case smc::MemoryArrangement_8GB:
return 6964_MB;
}
}();
/* Return (possibly) adjusted size. */
return base_pool_size;
}
size_t KSystemControl::Init::GetAppletPoolSize() {
/* Get the base pool size. */
const size_t base_pool_size = []() ALWAYS_INLINE_LAMBDA -> size_t {
switch (GetMemoryArrangeForInit()) {
case smc::MemoryArrangement_4GB:
default:
return 507_MB;
case smc::MemoryArrangement_4GBForAppletDev:
return 1554_MB;
case smc::MemoryArrangement_4GBForSystemDev:
return 448_MB;
case smc::MemoryArrangement_6GB:
return 562_MB;
case smc::MemoryArrangement_6GBForAppletDev:
return 2193_MB;
case smc::MemoryArrangement_8GB:
return 562_MB;
}
}();
/* Return (possibly) adjusted size. */
constexpr size_t ExtraSystemMemoryForAtmosphere = 40_MB;
return base_pool_size - ExtraSystemMemoryForAtmosphere - KTraceBufferSize;
}
size_t KSystemControl::Init::GetMinimumNonSecureSystemPoolSize() {
/* Verify that our minimum is at least as large as Nintendo's. */
constexpr size_t MinimumSizeWithFatal = ::ams::svc::RequiredNonSecureSystemMemorySizeWithFatal;
static_assert(MinimumSizeWithFatal >= 0x2C04000);
constexpr size_t MinimumSizeWithoutFatal = ::ams::svc::RequiredNonSecureSystemMemorySize;
static_assert(MinimumSizeWithoutFatal >= 0x2A00000);
/* Include fatal in non-seure size on 16.0.0+. */
return kern::GetTargetFirmware() >= ams::TargetFirmware_16_0_0 ? MinimumSizeWithFatal : MinimumSizeWithoutFatal;
}
u8 KSystemControl::Init::GetDebugLogUartPort() {
/* Get the log configuration. */
u64 value = 0;
smc::init::GetConfig(std::addressof(value), 1, smc::ConfigItem::ExosphereLogConfiguration);
/* Extract the port. */
return static_cast((value >> 32) & 0xFF);
}
void KSystemControl::Init::CpuOnImpl(u64 core_id, uintptr_t entrypoint, uintptr_t arg) {
MESOSPHERE_INIT_ABORT_UNLESS((::ams::kern::arch::arm64::smc::CpuOn(core_id, entrypoint, arg)) == 0);
}
/* Randomness for Initialization. */
void KSystemControl::Init::GenerateRandom(u64 *dst, size_t count) {
MESOSPHERE_INIT_ABORT_UNLESS(count <= 7);
smc::init::GenerateRandomBytes(dst, count * sizeof(u64));
}
u64 KSystemControl::Init::GenerateRandomRange(u64 min, u64 max) {
return KSystemControlBase::GenerateUniformRange(min, max, GenerateRandomU64ForInit);
}
/* System Initialization. */
void KSystemControl::ConfigureKTargetSystem() {
/* Configure KTargetSystem. */
volatile auto *ts = const_cast(std::addressof(KTargetSystem::s_data));
{
/* Set IsDebugMode. */
{
ts->is_debug_mode = GetConfigBool(smc::ConfigItem::IsDebugMode);
/* If debug mode, we want to initialize uart logging. */
ts->enable_debug_logging = ts->is_debug_mode;
}
/* Set Kernel Configuration. */
{
const auto kernel_config = util::BitPack32{GetConfigU32(smc::ConfigItem::KernelConfiguration)};
ts->enable_debug_memory_fill = kernel_config.Get();
ts->enable_user_exception_handlers = kernel_config.Get();
ts->enable_dynamic_resource_limits = !kernel_config.Get();
ts->enable_user_pmu_access = kernel_config.Get();
/* Configure call smc on panic. */
*const_cast(std::addressof(g_call_smc_on_panic)) = kernel_config.Get();
}
/* Set Kernel Debugging. */
{
/* NOTE: This is used to restrict access to SvcKernelDebug/SvcChangeKernelTraceState. */
/* Mesosphere may wish to not require this, as we'd ideally keep ProgramVerification enabled for userland. */
ts->enable_kernel_debugging = GetConfigBool(smc::ConfigItem::DisableProgramVerification);
}
}
}
void KSystemControl::InitializePhase1() {
/* Enable KTargetSystem. */
KTargetSystem::SetInitialized();
/* Check KTargetSystem was configured correctly. */
{
/* Check IsDebugMode. */
{
MESOSPHERE_ABORT_UNLESS(KTargetSystem::IsDebugMode() == GetConfigBool(smc::ConfigItem::IsDebugMode));
MESOSPHERE_ABORT_UNLESS(KTargetSystem::IsDebugLoggingEnabled() == GetConfigBool(smc::ConfigItem::IsDebugMode));
}
/* Check Kernel Configuration. */
{
const auto kernel_config = util::BitPack32{GetConfigU32(smc::ConfigItem::KernelConfiguration)};
MESOSPHERE_ABORT_UNLESS(KTargetSystem::IsDebugMemoryFillEnabled() == kernel_config.Get());
MESOSPHERE_ABORT_UNLESS(KTargetSystem::IsUserExceptionHandlersEnabled() == kernel_config.Get());
MESOSPHERE_ABORT_UNLESS(KTargetSystem::IsDynamicResourceLimitsEnabled() == !kernel_config.Get());
MESOSPHERE_ABORT_UNLESS(KTargetSystem::IsUserPmuAccessEnabled() == kernel_config.Get());
MESOSPHERE_ABORT_UNLESS(g_call_smc_on_panic == kernel_config.Get());
}
/* Check Kernel Debugging. */
{
MESOSPHERE_ABORT_UNLESS(KTargetSystem::IsKernelDebuggingEnabled() == GetConfigBool(smc::ConfigItem::DisableProgramVerification));
}
}
/* Initialize random and resource limit. */
{
u64 seed;
smc::GenerateRandomBytes(std::addressof(seed), sizeof(seed));
KSystemControlBase::InitializePhase1Base(seed);
}
/* Configure the Kernel Carveout region. */
{
const auto carveout = KMemoryLayout::GetCarveoutRegionExtents();
MESOSPHERE_ABORT_UNLESS(carveout.GetEndAddress() != 0);
smc::ConfigureCarveout(0, carveout.GetAddress(), carveout.GetSize());
}
}
void KSystemControl::InitializePhase2() {
/* Initialize the sleep manager. */
KSleepManager::Initialize();
/* Get the secure applet memory. */
const auto &secure_applet_memory = KMemoryLayout::GetSecureAppletMemoryRegion();
MESOSPHERE_INIT_ABORT_UNLESS(secure_applet_memory.GetSize() == SecureAppletMemorySize);
g_secure_applet_memory_address = secure_applet_memory.GetAddress();
/* Initialize KTrace (and potentially other init). */
KSystemControlBase::InitializePhase2();
}
u32 KSystemControl::GetCreateProcessMemoryPool() {
return KMemoryManager::Pool_Unsafe;
}
/* Privileged Access. */
void KSystemControl::ReadWriteRegisterPrivileged(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value) {
MESOSPHERE_ABORT_UNLESS(util::IsAligned(address, sizeof(u32)));
MESOSPHERE_ABORT_UNLESS(IsRegisterAccessibleToPrivileged(address));
MESOSPHERE_ABORT_UNLESS(smc::ReadWriteRegister(out, address, mask, value));
}
Result KSystemControl::ReadWriteRegister(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value) {
R_UNLESS(AMS_LIKELY(util::IsAligned(address, sizeof(u32))), svc::ResultInvalidAddress());
R_UNLESS(AMS_LIKELY(IsRegisterAccessibleToUser(address)), svc::ResultInvalidAddress());
R_UNLESS(AMS_LIKELY(smc::ReadWriteRegister(out, address, mask, value)), svc::ResultInvalidAddress());
R_SUCCEED();
}
/* Randomness. */
void KSystemControl::GenerateRandom(u64 *dst, size_t count) {
MESOSPHERE_INIT_ABORT_UNLESS(count <= 7);
smc::GenerateRandomBytes(dst, count * sizeof(u64));
}
u64 KSystemControl::GenerateRandomRange(u64 min, u64 max) {
KScopedInterruptDisable intr_disable;
KScopedSpinLock lk(s_random_lock);
if (AMS_LIKELY(s_initialized_random_generator)) {
return KSystemControlBase::GenerateUniformRange(min, max, []() ALWAYS_INLINE_LAMBDA -> u64 { return s_random_generator.GenerateRandomU64(); });
} else {
return KSystemControlBase::GenerateUniformRange(min, max, GenerateRandomU64FromSmc);
}
}
u64 KSystemControl::GenerateRandomU64() {
KScopedInterruptDisable intr_disable;
KScopedSpinLock lk(s_random_lock);
if (AMS_LIKELY(s_initialized_random_generator)) {
return s_random_generator.GenerateRandomU64();
} else {
return GenerateRandomU64FromSmc();
}
}
void KSystemControl::SleepSystem() {
MESOSPHERE_LOG("SleepSystem() was called\n");
KSleepManager::SleepSystem();
}
void KSystemControl::StopSystem(void *arg) {
if (arg != nullptr) {
/* Get the address of the legacy IRAM region. */
const KVirtualAddress iram_address = KMemoryLayout::GetDeviceVirtualAddress(KMemoryRegionType_LegacyLpsIram) + 64_KB;
constexpr size_t RebootPayloadSize = 0x24000;
/* NOTE: Atmosphere extension; if we received an exception context from Panic(), */
/* generate a fatal error report using it. */
const KExceptionContext *e_ctx = static_cast(arg);
auto *f_ctx = GetPointer<::ams::impl::FatalErrorContext>(iram_address + 0x2E000);
/* Clear the fatal context. */
std::memset(f_ctx, 0xCC, sizeof(*f_ctx));
/* Set metadata. */
f_ctx->magic = ::ams::impl::FatalErrorContext::Magic;
f_ctx->error_desc = ::ams::impl::FatalErrorContext::KernelPanicDesc;
f_ctx->program_id = (static_cast(util::FourCC<'M', 'E', 'S', 'O'>::Code) << 0) | (static_cast(util::FourCC<'S', 'P', 'H', 'R'>::Code) << 32);
/* Set identifier. */
f_ctx->report_identifier = KHardwareTimer::GetTick();
/* Set module base. */
f_ctx->module_base = KMemoryLayout::GetKernelCodeRegionExtents().GetAddress();
/* Set afsr1. */
f_ctx->afsr0 = GetVersionIdentifier();
f_ctx->afsr1 = static_cast(kern::GetTargetFirmware());
/* Set efsr/far. */
f_ctx->far = cpu::GetFarEl1();
f_ctx->esr = cpu::GetEsrEl1();
/* Copy registers. */
for (size_t i = 0; i < util::size(e_ctx->x); ++i) {
f_ctx->gprs[i] = e_ctx->x[i];
}
f_ctx->sp = e_ctx->sp;
f_ctx->pc = cpu::GetElrEl1();
/* Dump stack trace. */
{
uintptr_t fp = e_ctx->x[29];
for (f_ctx->stack_trace_size = 0; f_ctx->stack_trace_size < ::ams::impl::FatalErrorContext::MaxStackTrace && fp != 0 && util::IsAligned(fp, 0x10) && cpu::GetPhysicalAddressWritable(nullptr, fp, true); ++(f_ctx->stack_trace_size)) {
struct {
uintptr_t fp;
uintptr_t lr;
} *stack_frame = reinterpret_cast(fp);
f_ctx->stack_trace[f_ctx->stack_trace_size] = stack_frame->lr;
fp = stack_frame->fp;
}
}
/* Dump stack. */
{
uintptr_t sp = e_ctx->sp;
for (f_ctx->stack_dump_size = 0; f_ctx->stack_dump_size < ::ams::impl::FatalErrorContext::MaxStackDumpSize && cpu::GetPhysicalAddressWritable(nullptr, sp + f_ctx->stack_dump_size, true); f_ctx->stack_dump_size += sizeof(u64)) {
*reinterpret_cast(f_ctx->stack_dump + f_ctx->stack_dump_size) = *reinterpret_cast(sp + f_ctx->stack_dump_size);
}
}
/* Try to get a payload address. */
const KMemoryRegion *cached_region = nullptr;
u64 reboot_payload_paddr = 0;
if (smc::TryGetConfig(std::addressof(reboot_payload_paddr), 1, smc::ConfigItem::ExospherePayloadAddress) && KMemoryLayout::IsLinearMappedPhysicalAddress(cached_region, reboot_payload_paddr, RebootPayloadSize)) {
/* If we have a payload, reboot to it. */
const KVirtualAddress reboot_payload = KMemoryLayout::GetLinearVirtualAddress(KPhysicalAddress(reboot_payload_paddr));
/* Clear IRAM. */
std::memset(GetVoidPointer(iram_address), 0xCC, RebootPayloadSize);
/* Copy the payload to iram. */
for (size_t i = 0; i < RebootPayloadSize / sizeof(u32); ++i) {
GetPointer(iram_address)[i] = GetPointer(reboot_payload)[i];
}
}
smc::SetConfig(smc::ConfigItem::ExosphereNeedsReboot, smc::UserRebootType_ToFatalError);
}
if (g_call_smc_on_panic) {
/* If we should, instruct the secure monitor to display a panic screen. */
smc::ShowError(0xF00);
}
AMS_INFINITE_LOOP();
}
/* User access. */
void KSystemControl::CallSecureMonitorFromUserImpl(ams::svc::lp64::SecureMonitorArguments *args) {
/* Invoke the secure monitor. */
return smc::CallSecureMonitorFromUser(args);
}
/* Secure Memory. */
size_t KSystemControl::CalculateRequiredSecureMemorySize(size_t size, u32 pool) {
if (pool == KMemoryManager::Pool_Applet) {
return 0;
} else {
return KSystemControlBase::CalculateRequiredSecureMemorySize(size, pool);
}
}
Result KSystemControl::AllocateSecureMemory(KVirtualAddress *out, size_t size, u32 pool) {
/* Applet secure memory is handled separately. */
if (pool == KMemoryManager::Pool_Applet) {
R_RETURN(AllocateSecureMemoryForApplet(out, size));
}
/* Ensure the size is aligned. */
const size_t alignment = (pool == KMemoryManager::Pool_System ? PageSize : SecureAlignment);
R_UNLESS(util::IsAligned(size, alignment), svc::ResultInvalidSize());
/* Allocate the memory. */
const size_t num_pages = size / PageSize;
const KPhysicalAddress paddr = Kernel::GetMemoryManager().AllocateAndOpenContinuous(num_pages, alignment / PageSize, KMemoryManager::EncodeOption(static_cast(pool), KMemoryManager::Direction_FromFront));
R_UNLESS(paddr != Null, svc::ResultOutOfMemory());
/* Ensure we don't leak references to the memory on error. */
ON_RESULT_FAILURE { Kernel::GetMemoryManager().Close(paddr, num_pages); };
/* If the memory isn't already secure, set it as secure. */
if (pool != KMemoryManager::Pool_System) {
/* Set the secure region. */
R_UNLESS(SetSecureRegion(paddr, size), svc::ResultOutOfMemory());
}
/* We succeeded. */
*out = KPageTable::GetHeapVirtualAddress(paddr);
R_SUCCEED();
}
void KSystemControl::FreeSecureMemory(KVirtualAddress address, size_t size, u32 pool) {
/* Applet secure memory is handled separately. */
if (pool == KMemoryManager::Pool_Applet) {
return FreeSecureMemoryForApplet(address, size);
}
/* Ensure the size is aligned. */
const size_t alignment = (pool == KMemoryManager::Pool_System ? PageSize : SecureAlignment);
MESOSPHERE_ABORT_UNLESS(util::IsAligned(GetInteger(address), alignment));
MESOSPHERE_ABORT_UNLESS(util::IsAligned(size, alignment));
/* If the memory isn't secure system, reset the secure region. */
if (pool != KMemoryManager::Pool_System) {
/* Check that the size being freed is the current secure region size. */
MESOSPHERE_ABORT_UNLESS(g_secure_region_size == size);
/* Get the physical address. */
const KPhysicalAddress paddr = KPageTable::GetHeapPhysicalAddress(address);
MESOSPHERE_ABORT_UNLESS(paddr != Null);
/* Check that the memory being freed is the current secure region. */
MESOSPHERE_ABORT_UNLESS(paddr == g_secure_region_phys_addr);
/* Free the secure region. */
MESOSPHERE_ABORT_UNLESS(SetSecureRegion(paddr, 0));
}
/* Close the secure region's pages. */
Kernel::GetMemoryManager().Close(KPageTable::GetHeapPhysicalAddress(address), size / PageSize);
}
}